Project B07: Macroscopically delocalised quantum states of matter

Project B07 investigates concepts for matter-wave interferometers with macroscopically delocalized wave-packets to improve the scale factor for unprecedented sensitivities as envisioned for gravitational wave detection. Furthermore, non-classical correlations and folded interferometer trajectories to extend the free evolution time will be studied. A delocalization of several meters is anticipated, allowing the investigation of fundamental decoherence processes.

Introduction

In this project, we will advance metrology and test fundamental physics along four main axes in the recently completed Very Long Baseline Atom Interferometry (VLBAI) facility at the Hannover Institute of Technology (HITec). We will use time-averaged potentials to increase its duty cycle by creating and launching a multitude of ultra-cold clouds in rapid succession. Using the 10 m vacuum tube as a delay line, this generates a window in time during which a new ultra-cold ensemble can be reloaded and thus in principle offers dead-time free measurements. We will furthermore optimise large-momentum transfer beam splitting techniques based on Bragg and Bloch mechanisms in the vertical direction

Key components of the Hannover VLBAI facility

Results

The VLBAI facility at HITec is the pioneering instrument of its kind in Europe and with its completion we have laid the grounds for advancing the landscape of precision tests at the interface of quantum mechanics and general relativity using highly sensitive matter wave interferometry. It grants exciting possibilities for the investigation of quantum objects interacting with external gravitational fields across a 10 m vertical baseline with free evolution times of nearly three seconds in launch mode. Our apparatus features a high-performance magnetic shield protecting the phase evolution of matter waves in superposition from spurious forces and decoherence through technical noise. We have performed an extensive characterisation of the gravity environment surrounding the VLBAI facility and have implemented a state-of-the-art six-degrees-of-freedom seismic attenuation system (SAS) with the possibility to correlate atom interferometers with state-of-the-art auxiliary sensors for mitigation of vibrational noise.

We have recently implemented our all-optical source of rubidium Bose-Einstein condensates at the bottom end of the 10 m facility and the matter-wave interferometry laser systems allowing us to perform first atom-optical experiments. We were able to demonstrate record evaporation flux with evaporation ramps as short as 170 ms implemented a 2D matter-wave lens accessing the hundreds of picokelvin regime, and proposed a recipe towards ≤20 pK for the VLBAI facility.


Publications

Showing results 1 - 20 out of 30

Herbst A, Estrampes T, Albers H, Vollenkemper V, Stolzenberg K, Bode S et al. High-flux source system for matter-wave interferometry exploiting tunable interactions. Physical Review Research. 2024 Feb 2;6(1):013139. doi: 10.1103/physrevresearch.6.013139
Abend S, Allard B, Arnold AS, Ban T, Barry L, Battelier B et al. Technology roadmap for cold-atoms based quantum inertial sensor in space. AVS Quantum Science. 2023 Mar;5(1):019201. Epub 2023 Mar 20. doi: 10.1116/5.0098119
Kirsten-Siemß JN, Fitzek F, Schubert C, Rasel EM, Gaaloul N, Hammerer K. Large-Momentum-Transfer Atom Interferometers with μrad -Accuracy Using Bragg Diffraction. Physical review letters. 2023 Jul 19;131(3):033602. doi: 10.48550/arXiv.2208.06647, 10.1103/PhysRevLett.131.033602
Lezeik A, Tell D, Zipfel K, Gupta V, Wodey É, Rasel E et al. Understanding the gravitational and magnetic environment of a very long baseline atom interferometer. In CPT and Lorentz Symmetry: Proceedings of the Ninth Meeting on CPT and Lorentz Symmetry. World Scientific. 2023. p. 64-68 Epub 2022 Sept 19. doi: 10.48550/arXiv.2209.08886, 10.1142/9789811275388_0014
Lindberg DR, Gaaloul N, Kaplan L, Williams JR, Schlippert D, Boegel P et al. Asymmetric tunneling of Bose-Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics. 2023 Jan 18;56(2):025302. doi: 10.48550/arXiv.2110.15298, 10.1088/1361-6455/acae50
Albers H, Corgier R, Herbst A, Rajagopalan A, Schubert C, Vogt C et al. All-optical matter-wave lens using time-averaged potentials. Communications Physics. 2022 Mar 16;5(1):60. doi: 10.48550/arXiv.2109.08608, 10.1038/s42005-022-00825-2
Gaaloul N, Meister M, Corgier R, Pichery A, Boegel P, Herr W et al. A space-based quantum gas laboratory at picokelvin energy scales. Nature Communications. 2022 Dec 22;13(1):7889. doi: 10.48550/arXiv.2201.06919, 10.1038/s41467-022-35274-6
Herbst A, Albers H, Stolzenberg K, Bode S, Schlippert D. Rapid generation of all-optical K39 Bose-Einstein condensates using a low-field Feshbach resonance. Physical Review A. 2022 Oct 21;106(4):043320. doi: 10.1103/physreva.106.043320
Anders F, Idel A, Feldmann P, Bondarenko D, Loriani S, Lange K et al. Momentum Entanglement for Atom Interferometry. Physical Review Letters. 2021 Oct 1;127(14):140402. Epub 2021 Sept 29. doi: 10.1103/PhysRevLett.127.140402
Gebbe M, Siemß J-N, Gersemann M, Müntinga H, Herrmann S, Lämmerzahl C et al. Twin-lattice atom interferometry. Nature Communications. 2021 May 5;12(1):2544. doi: 10.1038/s41467-021-22823-8
Hensel T, Loriani S, Schubert C, Fitzek F, Abend S, Ahlers H et al. Inertial sensing with quantum gases: a comparative performance study of condensed versus thermal sources for atom interferometry. European Physical Journal D. 2021 Mar 22;75:108. doi: 10.1140/epjd/s10053-021-00069-9
Kaltenbaek R, Acin A, Bacsardi L, Bianco P, Bouyer P, Diamanti E et al. Quantum technologies in space. Experimental astronomy. 2021 Jun;51(3):1677-1694. Epub 2021 Jun 25. doi: 10.1007/s10686-021-09731-x
Kanthak S, Gebbe M, Gersemann M, Abend S, Rasel EM, Krutzik M. Time-domain optics for atomic quantum matter. New journal of physics. 2021 Sept 1;23(9):093002. doi: 10.1088/1367-2630/ac1285
Roura A, Schubert C, Schlippert D, Rasel EM. Measuring gravitational time dilation with delocalized quantum superpositions. Physical Review D. 2021 Oct 1;104(8):084001. doi: 10.1103/PhysRevD.104.084001
Schubert C, Abend S, Gersemann M, Gebbe M, Schlippert D, Berg P et al. Multi-loop atomic Sagnac interferometry. Scientific Reports. 2021 Dec;11(1):16121. Epub 2021 Aug 9. doi: 10.1038/s41598-021-95334-7
Albers H, Herbst A, Richardson LL, Heine H, Nath D, Hartwig J et al. Quantum test of the Universality of Free Fall using rubidium and potassium. European Physical Journal D. 2020 Jul 7;74(7):145. doi: 10.48550/arXiv.2003.00939, 10.1140/epjd/e2020-10132-6
Canuel B, Abend S, Amaro-Seoane P, Badaracco F, Beaufils Q, Bertoldi A et al. ELGAR: a European Laboratory for Gravitation and Atom-interferometric Research. Classical and Quantum Gravity. 2020 Oct 28;37(22):225017. doi: 10.48550/arXiv.1911.03701, 10.1088/1361-6382/aba80e
Corgier R, Loriani S, Ahlers H, Posso-Trujillo K, Schubert C, Rasel EM et al. Interacting quantum mixtures for precision atom interferometry. New Journal of Physics. 2020 Dec 11;22(12):123008. doi: 10.1088/1367-2630/abcbc8
Fitzek F, Siemß JN, Seckmeyer S, Ahlers H, Rasel EM, Hammerer K et al. Universal atom interferometer simulation of elastic scattering processes. Scientific Reports. 2020 Dec 17;10(1):22120. doi: 10.1038/s41598-020-78859-1, 10.15488/10752
Gersemann M, Gebbe M, Abend S, Schubert C, Rasel EM. Differential interferometry using a Bose-Einstein condensate. European Physical Journal D. 2020 Oct 1;74(10):203. doi: 10.1140/epjd/e2020-10417-8
All publications of the Collaborative Research Centre

Project leader

Dr. Dennis Schlippert
Address
Welfengarten 1
30167 Hannover
Dr. Dennis Schlippert
Address
Welfengarten 1
30167 Hannover
Prof. Dr. Ernst Maria Rasel
Address
Welfengarten 1
30167 Hannover
Building
Room
Address
Welfengarten 1
30167 Hannover
Building
Room

Staff

Dr. Klaus Zipfel
Address
Welfengarten 1
30167 Hannover
Building
Room
Dr. Klaus Zipfel
Address
Welfengarten 1
30167 Hannover
Building
Room