Project A05: Theory of LMT Atom Interferometers Involving Gravitational Fields

Large momentum transfer (LMT) atom interferometers offer unprecedented perspectives for exploring the coupling of quantum matter to the gravitational field. A05 develops ab initio theory for the coupling of composite quantum systems, such as atoms, to gravity and the comprehensive theory of LMT atomic interferometers for experimental tests of this coupling. In close collaboration with the experimental projects B07 and B09, we will investigate new methodologies for the quantum control of cold atoms for matter wave interferometery. A05 thus contributes to the central vision of DQ-mat to test our understanding of basic physics at an unparalleled level with the targeted design of quantum states.

Introduction

The primary goal of this project is to advance the theoretical and practical frameworks of atom interferometry, focusing on extending both one-dimensional and large-momentum-transfer (LMT) models to incorporate three-dimensional aspects, inelastic scattering processes, and complex light-matter interactions. This includes optimising light pulse sequences for improved metrological accuracy, developing robust computational methods for analysing gravitational interactions of quantum systems and classical gravitational fields, and tailoring these advancements for diverse applications ranging from gravimetry to space projects. Collectively, these efforts aim to overcome current limitations in precision measurements and theoretical understanding, enhancing the utility of atom interferometry in various scientific and practical domains.

Results

In the previous funding period, we developed an analytical microscopic theory for high-order Bragg diffraction based on the adiabatic theorem. We presented a theoretical framework for analysing such pulses, grounded in the profound insight that the physics of Bragg pulses can be effectively described by the adiabatic theorem. Our research demonstrated that efficient Bragg diffraction can be achieved with any smoothly varying and adiabatic pulse shape, with high-fidelity Gaussian pulses being a prime example of such adiabatic pulses.

Another goal of the previous funding period was to set up a systematic mathematical scheme that would allow to compute in a systematic fashion all those additional terms in the Hamiltonian that result from the interaction of the system with an external gravitational field. Our approach was based on a well defined expansion scheme in terms of the inverse of the velocity of light (a so-called post-Newtonian approximation). This led to novel expansion techniques which we subsequently applied to a electromagnetically bound 2- body system (called “atom”), thereby giving the first complete and systematic derivation of all couplings such systems to the Eddington-Robertson class of spherically symmetric and static gravitational fields.


Publications

Showing results 1 - 20 out of 25

Herbst A, Estrampes T, Albers H, Vollenkemper V, Stolzenberg K, Bode S et al. High-flux source system for matter-wave interferometry exploiting tunable interactions. Physical Review Research. 2024 Feb 2;6(1):013139. doi: 10.1103/physrevresearch.6.013139
Stolzenberg K, Struckmann C, Bode S, Li R, Herbst A, Vollenkemper V et al. Multi-axis inertial sensing with 2D arrays of Bose Einstein Condensates. 2024 Mar 13. Epub 2024 Mar 13.
Struckmann C, Corgier R, Loriani S, Kleinsteinberg G, Gox N, Giese E et al. Platform and environment requirements of a satellite quantum test of the weak equivalence principle at the 10-17 level. Physical Review D. 2024 Mar 5;109(6):064010. doi: 10.1103/PhysRevD.109.064010
Werner M, Schwartz PK, Kirsten-Siemß J-N, Gaaloul N, Giulini D, Hammerer K. Atom interferometers in weakly curved spacetimes using Bragg diffraction and Bloch oscillations. Physical Review D. 2024 Jan 29;109(2):022008. doi: 10.1103/PhysRevD.109.022008
Abend S, Allard B, Arnold AS, Ban T, Barry L, Battelier B et al. Technology roadmap for cold-atoms based quantum inertial sensor in space. AVS Quantum Science. 2023 Mar;5(1):019201. Epub 2023 Mar 20. doi: 10.1116/5.0098119
Alibabaei A, Schwartz PK, Giulini D. Geometric post-Newtonian description of massive spin-half particles in curved spacetime. Classical and Quantum Gravity. 2023 Nov 7;40(23):235014. doi: 10.1088/1361-6382/ad079c
Elliott ER, Aveline DC, Bigelow NP, Boegel P, Botsi S, Charron E et al. Quantum gas mixtures and dual-species atom interferometry in space. NATURE. 2023 Nov 16;623:502-508. Epub 2023 Nov 15. doi: 10.48550/arXiv.2306.15223, 10.1038/s41586-023-06645-w
Kirsten-Siemß JN, Fitzek F, Schubert C, Rasel EM, Gaaloul N, Hammerer K. Large-Momentum-Transfer Atom Interferometers with μrad -Accuracy Using Bragg Diffraction. Physical review letters. 2023 Jul 19;131(3):033602. doi: 10.48550/arXiv.2208.06647, 10.1103/PhysRevLett.131.033602
Lindberg DR, Gaaloul N, Kaplan L, Williams JR, Schlippert D, Boegel P et al. Asymmetric tunneling of Bose-Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics. 2023 Jan 18;56(2):025302. doi: 10.48550/arXiv.2110.15298, 10.1088/1361-6455/acae50
Pichery A, Meister M, Piest B, Böhm J, Rasel EM, Charron E et al. Efficient numerical description of the dynamics of interacting multispecies quantum gases. AVS Quantum Science. 2023 Dec;5(4):044401. Epub 2023 Nov 7. doi: 10.48550/arXiv.2305.13433, 10.1116/5.0163850
Albers H, Corgier R, Herbst A, Rajagopalan A, Schubert C, Vogt C et al. All-optical matter-wave lens using time-averaged potentials. Communications Physics. 2022 Mar 16;5(1):60. doi: 10.48550/arXiv.2109.08608, 10.1038/s42005-022-00825-2
Gaaloul N, Meister M, Corgier R, Pichery A, Boegel P, Herr W et al. A space-based quantum gas laboratory at picokelvin energy scales. Nature Communications. 2022 Dec 22;13(1):7889. doi: 10.48550/arXiv.2201.06919, 10.1038/s41467-022-35274-6
Martinez-Lahuerta VJ, Eilers S, Mehlstaeubler TE, Schmidt PO, Hammerer K. Ab initio quantum theory of mass defect and time dilation in trapped-ion optical clocks. Physical Review A. 2022 Sept 3;106(3):032803. doi: 10.1103/PhysRevA.106.032803
Boegel P, Meister M, Siemß J-N, Gaaloul N, Efremov MA, Schleich WP. Diffractive focusing of a uniform Bose–Einstein condensate. Journal of Physics B-Atomic Molecular and Optical Physics. 2021 Oct 19;54(18):185301. doi: 10.1088/1361-6455/ac2ab6
Corgier R, Gaaloul N, Smerzi A, Pezzè L. Delta-Kick Squeezing. Physical Review Letters. 2021 Oct 29;127(18):183401. doi: 10.1103/PhysRevLett.127.183401
Gebbe M, Siemß J-N, Gersemann M, Müntinga H, Herrmann S, Lämmerzahl C et al. Twin-lattice atom interferometry. Nature Communications. 2021 May 5;12(1):2544. doi: 10.1038/s41467-021-22823-8
Hensel T, Loriani S, Schubert C, Fitzek F, Abend S, Ahlers H et al. Inertial sensing with quantum gases: a comparative performance study of condensed versus thermal sources for atom interferometry. European Physical Journal D. 2021 Mar 22;75:108. doi: 10.1140/epjd/s10053-021-00069-9
Kanthak S, Gebbe M, Gersemann M, Abend S, Rasel EM, Krutzik M. Time-domain optics for atomic quantum matter. New journal of physics. 2021 Sept 1;23(9):093002. doi: 10.1088/1367-2630/ac1285
Canuel B, Abend S, Amaro-Seoane P, Badaracco F, Beaufils Q, Bertoldi A et al. ELGAR: a European Laboratory for Gravitation and Atom-interferometric Research. Classical and Quantum Gravity. 2020 Oct 28;37(22):225017. doi: 10.48550/arXiv.1911.03701, 10.1088/1361-6382/aba80e
Corgier R, Loriani S, Ahlers H, Posso-Trujillo K, Schubert C, Rasel EM et al. Interacting quantum mixtures for precision atom interferometry. New Journal of Physics. 2020 Dec 11;22(12):123008. doi: 10.1088/1367-2630/abcbc8
All publications of the Collaborative Research Centre

Project leader

Prof. Dr. Klemens Hammerer
Address
Appelstraße 2
30167 Hannover
Building
Room
114
Address
Appelstraße 2
30167 Hannover
Building
Room
114
Dr. Naceur Gaaloul
Address
Welfengarten 1
30167 Hannover
Building
Room
Dr. Naceur Gaaloul
Address
Welfengarten 1
30167 Hannover
Building
Room