Floquet Engineering Topological Many-Body Localized Systems

verfasst von
K. S.C. Decker, C. Karrasch, J. Eisert, D. M. Kennes
Abstract

We show how second-order Floquet engineering can be employed to realize systems in which many-body localization coexists with topological properties in a driven system. This allows one to implement and dynamically control a symmetry protected topologically ordered qubit even at high energies, overcoming the roadblock that the respective states cannot be prepared as ground states of nearest-neighbor Hamiltonians. Floquet engineering-the idea that a periodically driven nonequilibrium system can effectively emulate the physics of a different Hamiltonian-is exploited to approximate an effective three-body interaction among spins in one dimension, using time-dependent two-body interactions only. In the effective system, emulated topology and disorder coexist, which provides an intriguing insight into the interplay of many-body localization that defies our standard understanding of thermodynamics and into the topological phases of matter, which are of fundamental and technological importance. We demonstrate explicitly how combining Floquet engineering, topology, and many-body localization allows one to harvest the advantages (time-dependent control, topological protection, and reduction of heating, respectively) of each of these subfields while protecting them from their disadvantages (heating, static control parameters, and strong disorder).

Externe Organisation(en)
Technische Universität Braunschweig
Freie Universität Berlin (FU Berlin)
Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
Generalverwaltung der Max-Planck-Gesellschaft
Typ
Artikel
Journal
Physical review letters
Band
124
ISSN
0031-9007
Publikationsdatum
15.05.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Physik und Astronomie (insg.)
Elektronische Version(en)
https://doi.org/10.1103/PhysRevLett.124.190601 (Zugang: Unbekannt)