Interferometric sensitivity and entanglement by scanning through quantum phase transitions in spinor Bose-Einstein condensates

verfasst von
P. Feldmann, M. Gessner, M. Gabbrielli, C. Klempt, L. Santos, L. Pezzè, A. Smerzi
Abstract

Recent experiments demonstrated the generation of entanglement by quasiadiabatically driving through quantum phase transitions of a ferromagnetic spin-1 Bose-Einstein condensate in the presence of a tunable quadratic Zeeman shift. We analyze, in terms of the Fisher information, the interferometric value of the entanglement accessible by this approach. In addition to the Twin-Fock phase studied experimentally, we unveil a second regime, in the broken axisymmetry phase, which provides Heisenberg scaling of the quantum Fisher information and can be reached on shorter time scales. We identify optimal unitary transformations and an experimentally feasible optimal measurement prescription that maximize the interferometric sensitivity. We further ascertain that the Fisher information is robust with respect to nonadiabaticity and measurement noise. Finally, we show that the quasiadiabatic entanglement preparation schemes admit higher sensitivities than dynamical methods based on fast quenches.

Organisationseinheit(en)
Institut für Theoretische Physik
Institut für Quantenoptik
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
Externe Organisation(en)
QSTAR
CNR Istituto Nazionale di Ottica (INO)
European Laboratory for Non-linear Spectroscopy (LENS)
Università degli Studi di Firenze (UniFi)
Typ
Artikel
Journal
Physical Review A
Band
97
ISSN
2469-9926
Publikationsdatum
03.2018
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Atom- und Molekularphysik sowie Optik
Elektronische Version(en)
https://doi.org/10.1103/PhysRevA.97.032339 (Zugang: Geschlossen)
https://doi.org/10.15488/3586 (Zugang: Offen)