





**FUTURE & EMERGING** TECHNOLOGIES scheme

### NanoLace

Marie Curie-Excellence **MatterWaves** 



### **FUTURE & EMERGING** TECHNOLOGIES scheme

### **MatterWave**

Marie Curie-Excellence **MatterWaves** 







## Wolf von Klitzing

06/05/2022





### FORTH

PostDoc **Giannis Drougakis** 

### Faculty

Georgios Vasilakis Konstantinos Makris Dimitris Papazoglou Wolf von Klitzing





**FUTURE & EMERGING** TECHNOLOGIES scheme

### NanoLace

Marie Curie-Excellence MatterWaves



# **Bubble Rings**



### PhD Students

Vishnupriya Veettil Vidhu Catherine Antony **Apostolos Brimis** Pandora Examilioti Vinay Pareek (Saurabh Pandey) (Hector Mas)







# **BEC and MatterWaves** at IESL-FORTH

## Guided **Matter-Wave Interferometry**

**Guided for Matter-Wave Interferometry** for inertial navigation



## Matter-Wave & Quantum Tools





## Large Interferometers

**BEC in Space: Testing Einstein's** Weak equivalence principle

OUEST

**Space Clocks:** 

### **Atom Space Technologies: OBST 1 & 2**





















# Time averaged Adiabatic **Averaged Potentials** (TAAP)WLarmor ω<sub>Trap</sub>

# Quasi **Static**

~ DC

# Time-Averaging

# Audio

- Adiabatic
  - **Potentials** 
    - RF
    - **Bubble Traps :-)**

# **Atomtronic Time Scales**

## Time Averaging Quasi DC **Manipulation** Experiment $10^{3}$ Repetition $10^{0}$





# **Adiabatic Potentials**



# Adiabatic Potentials

















## Self-supporting ring in bubble traps



B. E. Sherlock et al. *Phys. Rev. A* **83:4** 043408 (2011)

Yuanyuan Guo et al. Phys. Rev. Lett. 124:2 (2020)

# **Bubble Rings**

### **Computed TAAP with rotating polarization**

![](_page_9_Picture_8.jpeg)

### **Absorption Images** a) with and without b) angular momentum

![](_page_9_Picture_10.jpeg)

B. E. Sherlock et al. *Phys. Rev. A* 83:4 043408 (2011)

![](_page_9_Picture_12.jpeg)

# Time averaged Adiabatic **Averaged Potentials** (TAAP)WLarmor ω<sub>Trap</sub>

# Quasi **Static**

~ DC

# Time-Averaging

# Audio

- Adiabatic
  - **Potentials** 
    - RF
    - **Bubble Traps :-)**

# Adiabatic Potentials

![](_page_11_Picture_1.jpeg)

# **Time-Averaged Adiabatic Potentials**

![](_page_12_Picture_1.jpeg)

## TAAP

![](_page_12_Picture_5.jpeg)

# **Time-Averaged Adiabatic Potentials**

![](_page_13_Picture_1.jpeg)

## TAAP

![](_page_13_Picture_5.jpeg)

![](_page_14_Picture_0.jpeg)

 $B_0 > 0 + z - y TAP$ 

### $B_0 > 0 + z - y TAP$

 $B_0 > 0 + z - y TAP$   $B_0 < 0 + z - y TAP$   $(1 \ \mu K \text{ iso-potential surfaces in a TAAP trap})$   $PRL 99:8 \ 083001 \ (2007)$ 

### $B_0 < 0 + y - TAP$

 $B_0 > 0 + y - TAP$ 

### IP-trap + RF-y-TAP

 $B_0 > 0 + x - y TAP$ 

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

### $B_0 > 0 + z - y TAP$

 $B_0 > 0 + z - y TAP$   $B_0 < 0 + z - y TAP$   $(1 \ \mu K \text{ iso-potential surfaces in a TAAP trap})$   $PRL 99:8 \ 083001 \ (2007)$ 

### $B_0 < 0 + y - TAP$

 $B_0 > 0 + y - TAP$ 

### IP-trap + RF-y-TAP

B<sub>0</sub>> 0 + x-y TAP

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_16_Picture_3.jpeg)

## N=300k, T=3-30 nK Ø=1-2 mm

![](_page_17_Picture_0.jpeg)

# Independent **State-Dependent Buckets**

Waveguide

![](_page_17_Figure_3.jpeg)

## Polarization

![](_page_17_Figure_6.jpeg)

![](_page_17_Picture_8.jpeg)

Gravity Tilt

![](_page_17_Figure_10.jpeg)

 $|F = 1, m_{\rm F} = -1\rangle$   $|F = 2, m_{\rm F} = +1\rangle$ P Navez et al. <u>New Journal of Physics</u> **18:7** 075014 (2016)

# BEC in a Ring

# MOT Quadrupole-Trap BEC in Dipole Trap BEC in Ring

![](_page_18_Figure_2.jpeg)

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_4.jpeg)

# BEC in a Ring

# MOT Quadrupole-Trap BEC in Dipole Trap BEC in Ring

![](_page_19_Figure_2.jpeg)

![](_page_19_Picture_3.jpeg)

![](_page_19_Picture_4.jpeg)

# BEC in a Ring

# MOT Quadrupole-Trap BEC in Dipole Trap BEC in Ring Accelerate

![](_page_20_Figure_2.jpeg)

![](_page_20_Picture_3.jpeg)

# Bang-Bang Scheme of Optimal Control Theory

Chen et al. Phys. Rev. A 84, 43415 (2011).

# **Ring Accelerator**

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_7.jpeg)

# **Ring Accelerator**

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_7.jpeg)

# BEC in a waveguide @ 30 mm/s

![](_page_24_Figure_1.jpeg)

# Superfluid critical velocity:

 $v_c = \sqrt{\mu/m}$ = 1.8 mm/s

v = Mach 17

# => perfectly smooth wave guides

Saurabh Pandey et al. *Nature* **570:7760** 205--209 (2019)

![](_page_24_Picture_7.jpeg)

# Expansion of a rotating BEC in the ring

![](_page_25_Picture_1.jpeg)

# Optimal Control Atom-Optics

![](_page_26_Picture_1.jpeg)

## Free expansion

![](_page_26_Picture_3.jpeg)

## Matterwave Lensing

![](_page_27_Picture_0.jpeg)

### Too short lens

![](_page_27_Figure_2.jpeg)

# **Focusing the MW-Lens**

### Optimal lens

### Overshooting lens

### **Matthias Meister**

```
Saurabh Pandey et al.
     Atomtronic Matter-Wave Lensing
Physical Review Letters 126 17 (2021)
```

# **Focusing the MW-Lens**

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_30_Figure_0.jpeg)

# Matterwave Guide/Ring

Effective Flatness of the waveguide: 189 pK = 2 nm height difference

# Matterwave Guide/Ring

## 40 000 atoms with 40 000 *h*/atom

![](_page_32_Picture_3.jpeg)

Effective Flatness of the waveguide: 189 pK = 2 nm height difference

![](_page_33_Figure_1.jpeg)

![](_page_33_Picture_2.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_34_Picture_2.jpeg)

![](_page_34_Picture_3.jpeg)

![](_page_35_Picture_2.jpeg)

# g

![](_page_36_Picture_2.jpeg)

![](_page_36_Figure_3.jpeg)

# Laughlin vs Giant Vortex

![](_page_37_Picture_1.jpeg)

# Laughlin vs Giant Vortex

### Transition from the mean-field to the bosonic Laughlin state in a rotating Bose-Einstein condensate (O)

G.Vasilakis, A. Roussou, J. Smyrnakis, M. Magiropoulos, W. von Klitzing, and G. M. Kavoulakis *Physical Review A* **100** (2019)

# J J

![](_page_39_Figure_1.jpeg)

## Giant Vortex ? $\Omega/\omega_{ ho} > 1.7$

![](_page_39_Figure_3.jpeg)

# Loading the Bubble

B. E. Sherlock et al. Phys. Rev. A 83:4 043408 (2011)

![](_page_40_Figure_0.jpeg)

![](_page_40_Figure_1.jpeg)

# Fast Loading Description (45 ms transfer)

Time in Shell [s]

# Adiabtic Loading: (non) oscillating bubble ring

![](_page_41_Figure_1.jpeg)

# Adiabatic loading: Radius of Ring vs Bubble

![](_page_42_Figure_1.jpeg)

# 10Hz Shell 10Hz ring

# Adiabatic loading: Radius of Ring vs Bubble

![](_page_43_Figure_1.jpeg)

20 Hz in ring 15 Hz in ring 10 Hz in ring

![](_page_44_Picture_0.jpeg)

![](_page_44_Figure_1.jpeg)

Giant Vortex ?  $\Omega/\omega_{\rho} > 1.7$ 

(Observed with condensed and thermal atoms)

![](_page_45_Picture_0.jpeg)

![](_page_45_Picture_1.jpeg)

![](_page_45_Picture_2.jpeg)

![](_page_45_Picture_3.jpeg)

![](_page_45_Picture_4.jpeg)

- Matterwave Waveguide
  - Lossless, Hypersonic flow of BECs
  - Ultra-high angular Momentum
  - Super Flat and Controllable
- Giant Vortices
- Bubble Rings
- Ellipticity / Oscillations

![](_page_45_Picture_13.jpeg)

![](_page_45_Picture_15.jpeg)

**BEC rings** 

![](_page_45_Figure_17.jpeg)

![](_page_45_Picture_18.jpeg)

![](_page_46_Picture_1.jpeg)

![](_page_46_Picture_2.jpeg)

![](_page_46_Picture_3.jpeg)

![](_page_46_Picture_4.jpeg)

![](_page_46_Picture_5.jpeg)

![](_page_46_Picture_6.jpeg)

# **Atomtronic Ring Physics**

![](_page_46_Picture_8.jpeg)

![](_page_46_Picture_9.jpeg)

![](_page_46_Picture_10.jpeg)

![](_page_46_Picture_11.jpeg)

![](_page_46_Picture_12.jpeg)

![](_page_46_Picture_13.jpeg)

# 8