

Vortices in bubble shaped Bose–Einstein condensates

Angela White

ARC Centre of Excellence in Future Low-Energy Electronics Technologies, School of Mathematics and Physics, University of Queensland

Madison Wait, Joe Hope

Department of Quantum Science, Research School of Physics and Engineering, The Australian National University

Motivation

Experimental realisation of shell geometries

Topologically interesting geometry

Vortex dynamics on curved surfaces

Bowen group: Science **366**, 1480 (2019) Padavić, Sun, Lannert and Vishveshwara: Phys. Rev. A **102**, 043305 (2020) Bereta, Caracanhas and Fetter: Phys. Rev. A **103**, 053306 (2021) Caracanhas, Massignan and Fetter: Phys. Rev. A **105**, 023307 (2022)

Quantum turbulence on the bubble geometry Useful toy models for planetary atmospheric dynamics?

Overview

1. Vortex lattices

2. Multi-charged vortices

Quantum Rotation

Superfluids:

$$\psi = \sqrt{n}e^{i\theta}$$
$$\mathbf{v} = \frac{\hbar}{m}\nabla\theta$$

$$\oint_C \mathbf{ds} \cdot \mathbf{v} = \frac{\hbar}{m} \oint_C \mathbf{ds} \cdot \nabla \theta = \frac{\hbar}{m} 2\pi n$$

 $n=0,\pm 1,\pm 2...$

Circulation is either 0 or a multiple of $2\pi\hbar/m$

Topologically Interesting

Hedgehog / hairy ball theorem:

'We can't have a vector field on a sphere that is both continuous and everywhere non-zero.'

Impossible to perfectly comb a hairy sphere.

User NoJhan https://en.wikipedia.org/wiki/Hairy_ball_theorem

Consequence for a BEC on a sphere: A vortex on a sphere should always come in pairs.

Lamb Hydrodynamics Dover publications, New York 1945

A vortex on a sphere should always come in pairs

Side view

Top view

How does background curvature change vortex lattice formation?

Triangular 'Abrikosov' vortex lattice

163280130

Ketterle Lab: Science **292** p476-479 (2001)

How does background curvature change vortex lattice formation?

Rotation around z-axis: do we expect Abrikosov vortex lattice?

FIG. 1. A rotating 2N-vortex solution to the point-vortex problem on S².

FIG. 2. The skewed rotating 2N-vortex solution to the point-vortex problem on S^2 .

M. Gelantalis & P. Sternberg, J. Math. Phys, 53, 083701 (2012).

Vortex lattices in a curved background

Gross-Pitaevskii equation in the rotating frame:

$$i\hbar\frac{\partial}{\partial t}\psi = \left(-\frac{\hbar^2}{2m}\nabla^2 + V + g|\psi|^2 - \Omega_z L_z\right)\psi$$

Spherical shell potential: $V = \frac{1}{2}m\omega_r^2 (r - r_0)^2$

Angular momentum operator: $L_z = xp_y - yp_x$

Vortex lattices in a curved background

Vortex lattices in a curved background Low rotation rates $\Omega = 0.3\omega_r$

Top view

Compare to rotation of a 2D disk-shaped BEC

Abrikosov-like!

Transition to vortex lines through the bulk condensate Distortion of the spherical shell shape Vortex lattices in a curved background Distortion of the spherical shell shape $\Omega = 0.35 \omega_r$

Side view

Centrifugal force: Pushes atoms away from the centre of rotation

$$n = \frac{1}{U_0} \left(\mu - V + \frac{1}{2} m \left(\Omega \times \mathbf{r} \right)^2 \right)$$

Will we observe a transition to toroidal geometries under rotation for thin shells ?

Vortex lattices in a curved background Faster rotation rates $\Omega = 0.5\omega_r$ Top view Side view 2 1 Phase 0 Top view

-2

-1

Vortex lattices in a curved background

Low rotation rates - familiar triangular lattices emerge

Distortion in the spherical shell shape to elliptical shells due to centrifugal force under rotation

Faster rotation rates - appearance of a large multi-charged vortex core

Future work: Experimentally realistic potentials 2. Multi-charged vortices

Does the shell geometry provide any topological protection for exotic topological excitations?

Kravchuk et al Topologically stable magnetisation states on a spherical shell: Curvature stabilised skyrmions Phys. Rev. B **94** 144402 (2016)

Side view

Resulting density profile l=2 vortex

Multi-charged vortex-anti-vortex pair

Phase-imprinting multi-charge vortices

Resulting density isosurface l = 2 vortex and two singly charged equatorial vortices

Phase-imprinting multi-charge vortices

Varying the region or 'patch' of phase-imprinting changes the location of singly-charged vortices

Multi-charge vortex dynamics

Under evolution, a configuration of a multi-charged vortex with singly charged vortices decays.

Variation of average separation distance

Phase

Multi-charged vortex& *l* singly charged vortices

Multi-charged vortex-anti-vortex pair Same behaviour under addition of noise

Moving the singly charged vortices towards the antipode

Average vortex separation distance (l = 4)

Forcing decay by a sudden asymmetric shift in trap potential

$$V = \frac{(r - r_0)^2}{2} \to \frac{(\sqrt{x^2 + (y + \delta y)^2 + z^2} - r_0)^2}{2}$$

l = 4 Multi-charge vortex - antivortex pair

l = 4 Multi-charge vortex with four singly charged equatorial vortices

Stability of multi-charged vortices

Madison Wait

Multi-charged vortex with singly charged vortices is unstable to decay

Multi-charged vortex - anti vortex pair at the antipode appears stable to unwinding except for a large sudden asymmetric shift in the trapping potential

Is this enhanced stability due to topology?

Is there 'topological protection' of other exotic topological states?

Conclusions

Familiar triangular Abrikosov lattices appear for shell condensates under rotation

Centrifugal force distorts spherically symmetric shells to elliptical shapes

Multi-charged vortex pairs at the antipodes appear to be stable.

A multi-charged vortex will readily decay paired with singly charged vortices at the antipode.

Thank you!