Scattering theory and equation of state of a spherical 2D Bose gas

Andrea Tononi

Laboratoire Physique Théorique et Modèles Statistiques, CNRS, Université Paris-Saclay

Workshop on Prospects of Quantum Bubbles Physics

07/04/2022
based on
[A. Tononi, PRA 105, 023324 (2022)]

Outline

\triangleright Introduction
\triangleright Equation of state of a 2D spherical Bose gas
\triangleright Derivation of the equation through scattering theory
\triangleright Application: hydrodynamic modes
\triangleright Conclusions

Low-dimensional quantum gases

(2D)
(1D)

Low-dimensional quantum gases

(2D)

Quantum gases and their many-body properties have been studied consistently only in "flat" low-dimensional configurations

What about curved geometries?

Quantum bubbles (rf-induced adiabatic potentials)

Theoretical proposal of [Zobay, Garraway, PRL 86, 1195 (2001)]:
confine the atoms with $B_{0}(\vec{r})$, and $B_{r f}(\vec{r}, t)$, yielding

$$
U(\vec{r})=M_{F} \sqrt{\left[\sum_{i} \frac{m}{2} \omega_{i}^{2} x_{i}^{2}-\hbar \Delta\right]^{2}+(\hbar \Omega)^{2}}
$$

ω_{i} : frequencies of the bare harmonic trap
Δ : detuning from the resonant frequency
Ω : Rabi frequency between coupled levels

Quantum bubbles (rf-induced adiabatic potentials)

Theoretical proposal of [Zobay, Garraway, PRL 86, 1195 (2001)]: confine the atoms with $B_{0}(\vec{r})$, and $B_{r f}(\vec{r}, t)$, yielding

$$
U(\vec{r})=M_{F} \sqrt{\left[\sum_{i} \frac{m}{2} \omega_{i}^{2} x_{i}^{2}-\hbar \Delta\right]^{2}+(\hbar \Omega)^{2}}
$$

ω_{i} : frequencies of the bare harmonic trap
Δ : detuning from the resonant frequency
Ω : Rabi frequency between coupled levels

Minimum of $U(\vec{r})$ for

$$
\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}+\omega_{z}^{2} z^{2}=\frac{2 \hbar \Delta}{m} .
$$

Quantum bubbles

On Earth...

[Colombe et al., EPL 67, 593 (2004)]

Quantum bubbles

On Earth...

[Colombe et al., EPL 67, 593 (2004)]

Quantum bubbles, in microgravity

...in microgravity:

On Earth...

[Colombe et al., EPL 67, 593 (2004)]

PHYSICAL REVIEW LETTERS 125, 010402 (2020)

Quantum Bubbles in Microgravity

A. Tononi $\varphi_{,}^{1,}{ }^{1+}$ F. Cinti $\varphi_{,}^{2,3,4+}$ and L. Salasnich $\varphi^{1,5,+}$

[Carollo et al., arXiv:2108.05880]

Bose-Einstein condensation in ellipsoidal bubbles

Modeling of microgravity experiments in [AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

For the realistic trap parameters ([Lundblad et al, npj

Microgravity 5, 30 (2019))):
$T_{B E C}$ drops quickly with $\Delta \propto$ shell area

Interplay of T and $T_{\mathrm{BEC}}^{(0)}$: [Rhyno, et al. PRA 104, 063310 (2021)]

Outline

\triangleright Introduction
\triangleright Equation of state of a 2D spherical Bose gas
\triangleright Derivation of the equation through scattering theory
\triangleright Application: hydrodynamic modes
\triangleright Conclusions

Equation of state of a spherical Bose gas

Implementing the Bogoliubov theory, we calculated $T_{\mathrm{BEC}}, n_{0} / n, \Omega$. [AT, Salasnich, BEC on the surface of a sphere, PRL 123, 160403 (2019)]
*: [AT, PRA 105, 023324 (2022)],
[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]

Equation of state of a spherical Bose gas

Implementing the Bogoliubov theory, we calculated $T_{\mathrm{BEC}}, n_{0} / n, \Omega$. [AT, Salasnich, BEC on the surface of a sphere, PRL 123, 160403 (2019)]

Recently, through the analysis of scattering theory*...
equation of state:

$$
n=\frac{m \mu}{4 \pi \hbar^{2}} \ln \left\{\frac{4 \hbar^{2}[1-\alpha(\mu)]}{m \mu a_{s}^{2} e^{2 \gamma+1+\alpha(\mu)}}\right\}
$$

with $\alpha(\mu)=1-\frac{\mu}{\mu+E_{1}^{B}+\epsilon_{1}}$,
$E_{l}^{B}=\sqrt{\epsilon_{l}\left(\epsilon_{l}+2 \mu\right)}$,
$\epsilon_{I}=\hbar^{2} I(I+1) /\left(2 m R^{2}\right)$

$$
\text { *: [AT, PRA 105, } 023324 \text { (2022)], }
$$

[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]

Equation of state of a spherical Bose gas

Implementing the Bogoliubov theory, we calculated $T_{\mathrm{BEC}}, n_{0} / n, \Omega$. [AT, Salasnich, BEC on the surface of a sphere, PRL 123, 160403 (2019)]

Recently, through the analysis of scattering theory*...
equation of state:

$$
\begin{gathered}
n=\frac{m \mu}{4 \pi \hbar^{2}} \ln \left\{\frac{4 \hbar^{2}[1-\alpha(\mu)]}{m \mu a_{s}^{2} e^{2 \gamma+1+\alpha(\mu)}}\right\}, \\
\text { with } \alpha(\mu)=1-\frac{\mu}{\mu++_{1}^{B}+\epsilon_{1}}, \\
E_{I}^{\mathrm{B}}=\sqrt{\epsilon_{I}\left(\epsilon_{l}+2 \mu\right),} \\
\epsilon_{I}=\hbar^{2} I(I+1) /\left(2 m R^{2}\right)
\end{gathered}
$$

$$
\begin{gathered}
\left(n \equiv n_{\infty}=\frac{m \mu}{4 \pi \hbar^{2}} \ln \left(\frac{4 \hbar^{2}}{m \mu a_{s}^{2} e^{2 \gamma+1}}\right) \text { at } R=\infty, \alpha=0\right) \\
\quad *:[\text { AT, PRA } 105,023324(2022)]
\end{gathered}
$$

[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]

Equation of state of a spherical Bose gas

$$
n=\frac{m \mu}{4 \pi \hbar^{2}} \ln \left\{\frac{4 \hbar^{2}[1-\alpha(\mu)]}{m \mu a_{s}^{2} e^{2 \gamma+1+\alpha(\mu)}}\right\}
$$

with $\alpha(\mu)=1-\frac{\mu}{\mu+E_{1}^{B}+\epsilon_{1}}$.

Comments:

- "Less atoms on sphere than on plane": at fixed μ, a_{s} : $n \rightarrow n_{\infty}$ when $R \rightarrow \infty$, but $N<N_{\infty}$ when $R \rightarrow \infty$,

Equation of state of a spherical Bose gas

$$
n=\frac{m \mu}{4 \pi \hbar^{2}} \ln \left\{\frac{4 \hbar^{2}[1-\alpha(\mu)]}{m \mu a_{s}^{2} e^{2 \gamma+1+\alpha(\mu)}}\right\}
$$

with $\alpha(\mu)=1-\frac{\mu}{\mu+E_{1}^{B}+\epsilon_{1}}$.

Comments:

- "Less atoms on sphere than on plane": at fixed μ, a_{s} : $n \rightarrow n_{\infty}$ when $R \rightarrow \infty$, but $N<N_{\infty}$ when $R \rightarrow \infty$,
- "the container changes the thermodynamics"
\rightarrow the geometry influences the thermodynamics by inducing finite-size geometry-dependent corrections

Equation of state of a spherical Bose gas

$$
n=\frac{m \mu}{4 \pi \hbar^{2}} \ln \left\{\frac{4 \hbar^{2}[1-\alpha(\mu)]}{m \mu a_{s}^{2} e^{2 \gamma+1+\alpha(\mu)}}\right\}
$$

with $\alpha(\mu)=1-\frac{\mu}{\mu+E_{1}^{B}+\epsilon_{1}}$.

Comments:

- "Less atoms on sphere than on plane": at fixed μ, a_{s} : $n \rightarrow n_{\infty}$ when $R \rightarrow \infty$, but $N<N_{\infty}$ when $R \rightarrow \infty$,
- "the container changes the thermodynamics"
\rightarrow the geometry influences the thermodynamics by inducing finite-size geometry-dependent corrections
- extandable (in principle) to other geometries

Outline

\triangleright Introduction
\triangleright Equation of state of a 2D spherical Bose gas
\triangleright Derivation of the equation through scattering theory
\triangleright Application: hydrodynamic modes
\triangleright Conclusions

Let us see how the equation of state is derived

Bogoliubov theory of a spherical gas

Uniform bosons on the surface of the sphere

$$
\mathcal{Z}=\int \mathcal{D}[\bar{\psi}, \psi] e^{-\frac{S[\bar{\psi}, \psi]}{\hbar}}, \quad \Omega=-\frac{1}{\beta} \ln (\mathcal{Z})
$$

where

$$
S[\bar{\psi}, \psi]=\int_{0}^{\beta \hbar} d \tau \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta R^{2} \sin \theta \mathcal{L}(\bar{\psi}, \psi)
$$

is the Euclidean action, and

$$
\mathcal{L}=\bar{\psi}(\theta, \varphi, \tau)\left(\hbar \partial_{\tau}+\frac{\hat{L}^{2}}{2 m R^{2}}-\mu\right) \psi(\theta, \varphi, \tau)+\frac{g_{0}}{2}|\psi(\theta, \varphi, \tau)|^{4}
$$

is the Euclidean Lagrangian.

Bogoliubov theory of a spherical gas

Bogoliubov theory:

$$
\psi(\theta, \varphi, \tau)=\psi_{0}+\eta(\theta, \varphi, \tau)
$$

$$
\eta(\theta, \varphi, \tau)
$$

Performing the Gaussian integral on $\sim \eta^{2}$ terms, we get

$$
\Omega=-\left(4 \pi R^{2}\right) \frac{\mu^{2}}{2 g_{0}}+\frac{1}{2} \sum_{l=1}^{\infty} \sum_{m_{l}=-l}^{l}\left(E_{l}^{\mathrm{B}}-\epsilon_{l}-\mu\right)
$$

with $E_{I}^{\mathrm{B}}=\sqrt{\epsilon_{I}\left(\epsilon_{I}+2 \mu\right)}$, and $\epsilon_{I}=\hbar^{2} I(I+1) /\left(2 m R^{2}\right)$.
[AT, Salasnich, PRL 123, 160403 (2019)]

Bogoliubov theory of a spherical gas

$$
\Omega=-\left(4 \pi R^{2}\right) \frac{\mu^{2}}{2 g_{0}}+\frac{1}{2} \sum_{l=1}^{\infty} \sum_{m_{l}=-I}^{I}\left(E_{l}^{\mathrm{B}}-\epsilon_{l}-\mu\right)
$$

Problem: the zero-point energy diverges logarithmically at large I :

$$
\frac{1}{2} \int_{1}^{I_{c}} \mathrm{~d} I(2 I+1)\left(E_{l}^{B}-\epsilon_{l}-\mu\right) \sim \ln \left(I_{c}\right)
$$

Solution: g_{0} scales with I_{c} !
To see this, we need to discuss scattering theory

Scattering theory on the sphere

For a particle with reduced mass on the sphere, the interacting scattering problem reads [Zhang, Ho, J. Phys. B 51, 115301 (2018)]

$$
\hat{H}_{0} \Psi_{\nu}^{\mu}(\theta, \varphi)=\mathcal{E}_{\nu} \Psi_{\nu}^{\mu}(\theta, \varphi), \quad \text { when } \quad \theta>r_{0} / R
$$

with $\hat{H}_{0}=\frac{\hat{L}^{2}}{m R^{2}}$.

Scattering theory on the sphere

For a particle with reduced mass on the sphere, the interacting scattering problem reads [Zhang, Ho, J. Phys. B 51, 115301 (2018)]

$$
\hat{H}_{0} \Psi_{\nu}^{\mu}(\theta, \varphi)=\mathcal{E}_{\nu} \Psi_{\nu}^{\mu}(\theta, \varphi), \quad \text { when } \quad \theta>r_{0} / R
$$

with $\hat{H}_{0}=\frac{\hat{L}^{2}}{m R^{2}}$. For s-wave scattering, we can write

$$
\Psi_{\nu}^{0}(\theta, \varphi) \propto P_{\nu}^{0}(\cos \theta)+\frac{f_{0}\left(\mathcal{E}_{\nu}\right)}{4 i}\left[P_{\nu}^{0}(\cos \theta)+\frac{2 i}{\pi} Q_{\nu}^{0}(\cos \theta)\right],
$$

and imposing $\Psi_{\nu}^{0}\left(a_{s} / R, \varphi\right)=0$:

$$
f_{0}\left(\mathcal{E}_{\nu}\right)=-\frac{4}{\cot \delta_{0}\left(\mathcal{E}_{\nu}\right)-i}, \quad \cot \delta_{0}\left(\mathcal{E}_{\nu}\right)=\frac{2}{\pi} \ln \left(\frac{\nu a_{s} e^{\gamma_{\mathrm{E}}}}{2 R}\right)
$$

We identify (it is a shortcut, see [AT, PRA 105, 023324 (2022)] for all steps)

$$
g_{0} \approx f_{0}\left(\mathcal{E}_{l_{c}}\right) \approx-\frac{2 \pi \hbar^{2}}{m} \frac{1}{\ln \left[I_{c} a_{s} e^{\gamma_{\mathrm{E}}} /(2 R)\right]}
$$

Regularized equation of state

$$
\begin{aligned}
& \text { Putting } g_{0}=-\frac{2 \pi \hbar^{2}}{m} \frac{1}{\ln \left[I_{c} a_{s} e^{\gamma} /(2 R)\right]} \text { into } \\
& \qquad \Omega=-\left(4 \pi R^{2}\right) \frac{\mu^{2}}{2 g_{0}}+\frac{1}{2} \int_{1}^{I_{c}} \mathrm{~d} /(2 l+1)\left(E_{l}^{\mathrm{B}}-\epsilon_{l}-\mu\right),
\end{aligned}
$$

the $\ln \left(I_{c}\right)$ divergence disappears, and we obtain the equation of state:

$$
n=-\frac{1}{4 \pi R^{2}} \frac{\partial \Omega}{\partial \mu}=\frac{m \mu}{4 \pi \hbar^{2}} \ln \left\{\frac{4 \hbar^{2}[1-\alpha(\mu)]}{m \mu a_{s}^{2} e^{2 \gamma+1+\alpha(\mu)}}\right\}
$$

Outline

\triangleright Introduction
\triangleright Equation of state of a 2D spherical Bose gas
\triangleright Derivation of the equation through scattering theory
\triangleright Application: hydrodynamic modes
\triangleright Conclusions

Application: hydrodynamic modes

Knowing the equation of state and the superfluid density, we extend the Landau two-fluid model to the spherical case.
[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]

Application: hydrodynamic modes

Knowing the equation of state and the superfluid density, we extend the Landau two-fluid model to the spherical case.

Frequencies of the hydrodynamic modes:

$$
\omega_{1,2}^{2}=\left[\frac{I(I+1)}{R^{2}}\right]\left[\frac{v_{A}^{2}+v_{L}^{2}}{2} \pm \sqrt{\left(\frac{v_{A}^{2}+v_{L}^{2}}{2}\right)^{2}-v_{L}^{2} v_{T}^{2}}\right]
$$

ω_{1}, ω_{2} are the main quantitative probe of superfluid BKT transition

$$
v_{\{A, T\}}=\sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{\{\tilde{s}, T\}}}, \quad v_{L}=\sqrt{\frac{\rho_{s} T \tilde{s}^{2}}{\rho_{n} \tilde{c}_{V}}}
$$

Superfluid BKT transition in a spherical superfluid

Finite system size \Rightarrow

smooth vanishing of n_{s}

$\Delta T / T_{\text {in }} \propto \ln ^{-2}(R / \xi)$

Superfluid BKT transition in a spherical superfluid

Finite system size \Rightarrow
smooth vanishing of n_{s}

$$
T[\mathrm{nK}]
$$

$$
\Delta T / T_{\text {in }} \propto \ln ^{-2}(R / \xi)
$$

Renormalization group equations

$$
\begin{aligned}
\frac{d K^{-1}(\theta)}{d \ell(\theta)} & =-4 \pi^{3} y^{2}(\theta) \\
\frac{d y(\theta)}{d \ell(\theta)} & =[2-\pi K(\theta)] y(\theta)
\end{aligned}
$$

RG scale: $\ell(\theta)=\ln [2 R \sin (\theta / 2) / \xi]$
describe how the superfluid density $(\propto K)$ is renormalized by the thermally excited vortices with chemical potential $\sim-\ln (y)$

$$
E^{(\text {vor })}=\sum_{i=1}^{M} q_{i}^{2} \mu_{v}-
$$

$$
K^{(0)} \sum_{i \neq j=1}^{M} q_{i} q_{j} \ln \left[2 R \sin \left(\gamma_{i j} / 2\right) \xi\right]
$$

Outline

\triangleright Introduction
\triangleright Equation of state of a 2D spherical Bose gas
\triangleright Derivation of the equation through scattering theory
\triangleright Application: hydrodynamic modes
\triangleright Conclusions

Conclusions

- Curvature in quantum gases (and in cond. mat.): a new research direction.

The scientific community has just started exploring shell-shaped BECs, both experimentally and theoretically

Conclusions

- Curvature in quantum gases (and in cond. mat.): a new research direction.

The scientific community has just started exploring shell-shaped BECs, both experimentally and theoretically

- in spherical condensates: curvature \approx finite-size for BEC, but consequences on superfluidity
- interesting perspectives with ellipsoidal shells

Thank you for your attention!

References:

- AT, Salasnich, PRL 123, 160403 (2019)
- AT, Cinti, Salasnich, PRL 125, 010402 (2020)
- AT, Pelster, Salasnich, PRR 4, 013122 (2022)
- AT, PRA 105, 023324 (2022)

Backup slides

Scattering theory

Noninteracting scattering problem: $\hat{H}_{0}|\phi\rangle=\mathcal{E}_{0}|\phi\rangle$

and we suppose that $|\phi\rangle$, and \mathcal{E}_{0} are known

Scattering theory

Interacting scattering problem: $\left(\hat{H}_{0}+\hat{V}\right)|\Psi\rangle=\mathcal{E}_{0}|\Psi\rangle$

Scattering theory on the sphere

For a particle with reduced mass on the sphere, the interacting scattering problem reads [Zhang, Ho, J. Phys. B 51, 115301 (2018)]

$$
\hat{H}_{0} \Psi_{\nu}^{\mu}(\theta, \varphi)=\mathcal{E}_{\nu} \Psi_{\nu}^{\mu}(\theta, \varphi), \quad \text { when } \quad \theta>r_{0} / R
$$

with $\hat{H}_{0}=\frac{\hat{L}^{2}}{m R^{2}}$. For s-wave scattering, we can write

$$
\Psi_{\nu}^{0}(\theta, \varphi) \propto P_{\nu}^{0}(\cos \theta)+\frac{f_{0}\left(\mathcal{E}_{\nu}\right)}{4 i}\left[P_{\nu}^{0}(\cos \theta)+\frac{2 i}{\pi} Q_{\nu}^{0}(\cos \theta)\right],
$$

and imposing $\Psi_{\nu}^{0}\left(a_{s} / R, \varphi\right)=0$:

$$
f_{0}\left(\mathcal{E}_{\nu}\right)=-\frac{4}{\cot \delta_{0}\left(\mathcal{E}_{\nu}\right)-i}, \quad \cot \delta_{0}\left(\mathcal{E}_{\nu}\right)=\frac{2}{\pi} \ln \left(\frac{\nu a_{s} e^{\gamma_{\mathrm{E}}}}{2 R}\right)
$$

One could set $f_{0} \approx g_{0}$, but how we fix ν ?

Let us reconsider the scattering problem and find a condition to determine $g_{0}\left(l_{c}, a_{s}\right)$.

Scattering theory

Interacting scattering problem: $\left(\hat{H}_{0}+\hat{V}\right)|\Psi\rangle=\mathcal{E}|\Psi\rangle$

whose solution $\left|\Psi^{(+)}\right\rangle$is given by the Lippmann-Schwinger equation

$$
\mathcal{T}=\hat{V}+\hat{V} \frac{1}{\mathcal{E}_{0}-\hat{H}_{0}+i \eta} \hat{\mathcal{T}}
$$

where $\hat{\mathcal{T}}|\phi\rangle=\hat{V}\left|\Psi^{(+)}\right\rangle$.
[Lippmann, Schwinger, PR 79, 469 (1950)]

Scattering problem on the sphere

We consider the interatomic potential $\hat{V}_{0}=\tilde{g}_{0} \delta(1-\cos \theta) \delta(\varphi)$:

and calculate $\mathcal{T}_{l^{\prime}, l_{0}}=\left\langle l^{\prime}, m_{l}^{\prime}=0\right| \hat{\mathcal{T}}\left|l_{0}, m_{l_{0}}=0\right\rangle$ (s-wave scattering).

We get the Born series

$$
\mathcal{T}_{l^{\prime}, l_{0}}=\tilde{g}_{0} \frac{\sqrt{\left(2 I^{\prime}+1\right)\left(2 I_{0}+1\right)}}{4 \pi}\left[1+\sum_{l=0}^{\infty} \frac{\sqrt{2 l+1}}{\sqrt{2 l_{0}+1}} \frac{\mathcal{T}_{l, l_{0}}}{\mathcal{E}_{l_{0}}-\mathcal{E}_{l}+i \eta}\right]
$$

Scattering problem on the sphere

Summing the Born series, we get the renormalized interaction strength

$$
\frac{\sqrt{\left(2 l^{\prime}+1\right)\left(2 l_{0}+1\right)}}{4 \pi \mathcal{T}_{l^{\prime}, l_{0}}}=\frac{1}{\tilde{g}_{e}\left(\mathcal{E}_{l_{0}}+i \eta\right)}=\frac{1}{\tilde{g}_{0}}+\frac{1}{4 \pi} \sum_{l=0}^{l_{c}} \frac{2 l+1}{\mathcal{E}_{l}-\mathcal{E}_{l_{0}}-i \eta},
$$

By calculating the sum as integral and setting $\tilde{g}_{e}\left(\mathcal{E}_{l_{0}}\right)=f_{0}\left(\mathcal{E}_{\nu}\right)$, we get

$$
g_{0}=-\frac{2 \pi \hbar^{2}}{m} \frac{1}{\ln \left[\sqrt{I_{c}\left(I_{c}+1\right)} a_{s} e^{\gamma_{E}} /(2 R)\right]}
$$

Regularized equation of state

Putting

$$
g_{0}=-\frac{2 \pi \hbar^{2}}{m} \frac{1}{\ln \left[\sqrt{I_{c}\left(I_{c}+1\right)} a_{s} e^{\gamma_{E}} /(2 R)\right]}
$$

into

$$
\Omega(T=0)=-\left(4 \pi R^{2}\right) \frac{\mu^{2}}{2 g_{0}}+\frac{1}{2} \int_{1}^{l_{c}} \mathrm{~d} /(2 l+1)\left(E_{l}^{\mathrm{B}}-\epsilon_{l}-\mu\right)
$$

we get the regularized equation of state

$$
\begin{aligned}
\frac{\Omega(T=0)}{4 \pi R^{2}}= & -\frac{m \mu^{2}}{8 \pi \hbar^{2}}\left\{\ln \left[\frac{4 \hbar^{2}}{m\left(E_{1}^{B}+\epsilon_{1}+\mu\right) a_{s}^{2} e^{2 \gamma+1}}\right]+\frac{1}{2}\right\} \\
& +\frac{m E_{1}^{B}}{8 \pi \hbar^{2}}\left(E_{1}^{B}-\epsilon_{1}-\mu\right)
\end{aligned}
$$

Regularized equation of state

Number density $n=-\frac{1}{4 \pi R^{2}} \frac{\partial \Omega}{\partial \mu}$, yields

$$
n=\frac{m \mu}{4 \pi \hbar^{2}} \ln \left\{\frac{4 \hbar^{2}[1-\alpha(\mu)]}{m \mu a_{s}^{2} e^{2 \gamma+1+\alpha(\mu)}}\right\}+\frac{1}{4 \pi R^{2}} \sum_{l=1}^{\infty} \sum_{m_{l}=-I}^{l} \frac{\epsilon_{l}}{E_{l}^{B}} \frac{1}{e^{\beta E_{l}^{B}}-1},
$$

where we introduce the positive function

$$
\alpha(\mu)=1-\frac{\mu}{\mu+E_{1}^{B}+\epsilon_{1}}
$$

Regularized equation of state

Number density $n=-\frac{1}{4 \pi R^{2}} \frac{\partial \Omega}{\partial \mu}$, yields

$$
n=\frac{m \mu}{4 \pi \hbar^{2}} \ln \left\{\frac{4 \hbar^{2}[1-\alpha(\mu)]}{m \mu a_{s}^{2} e^{2 \gamma+1+\alpha(\mu)}}\right\}+\frac{1}{4 \pi R^{2}} \sum_{l=1}^{\infty} \sum_{m_{l}=-I}^{l} \frac{\epsilon_{l}}{E_{l}^{B}} \frac{1}{e^{\beta E_{l}^{B}}-1}
$$

where we introduce the positive function

$$
\alpha(\mu)=1-\frac{\mu}{\mu+E_{1}^{B}+\epsilon_{1}}
$$

Here $\epsilon_{1}=\hbar^{2} /\left(m R^{2}\right)$, and $E_{1}^{B}=\sqrt{\epsilon_{1}\left(\epsilon_{1}+2 \mu\right)}$.

For $R \rightarrow \infty: \alpha(\mu) \rightarrow 0$, reproducing [Mora, Castin, PRA 67, 053615 (2003)]

For finite R : equation of state of a finite-size curved Bose gas.

Bose-Einstein condensation in ellipsoidal bubbles

In [AT, Cinti, Salasnich, PRL 125, 010402 (2020)], we modeled the microgravity experiments ([arXiv:2108.05880])

For the realistic trap parameters ([Lundblad et al., npj

Microgravity 5, 30 (2019))):
$T_{B E C}$ drops quickly with $\Delta \propto$ shell area

$$
N \sim 10^{5}, T_{\mathrm{BEC}} \sim 30 \mathrm{nK}
$$

Difficult to reach fully-condensate regime...
\Rightarrow Finite-temperature properties are highly relevant

Density distribution

Condensate vs thermal density

[AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

Density distribution and free expansion

Harmonic trap

Condensate vs thermal density

[AT, Cinti, Salasnich, PRL 125, 010402 (2020)]

Landau two-fluid model

Phenomenological description of a quantum liquid as composed by

- Superfluid: zero viscosity, no entropy
- Normal fluid: viscous, carries all the system entropy
[Landau J. Phys. (USSR) 5, 71 (1941)]

Landau two-fluid model

Phenomenological description of a quantum liquid as composed by

- Superfluid: zero viscosity, no entropy
- Normal fluid: viscous, carries all the system entropy

Total mass density:

$$
\rho=\rho_{s}+\rho_{n}
$$

Mass current:
$\mathbf{j}=\rho_{s} \mathbf{v}_{s}+\rho_{n} \mathbf{v}_{n}$
[Landau J. Phys. (USSR) 5, 71 (1941)]

Landau two-fluid model

Phenomenological description of a quantum liquid as composed by

- Superfluid: zero viscosity, no entropy
- Normal fluid: viscous, carries all the system entropy

Hydrodynamic equations (linearized):

Total mass density:

$$
\rho=\rho_{s}+\rho_{n}
$$

Mass current:
$\mathbf{j}=\rho_{s} \mathbf{v}_{s}+\rho_{n} \mathbf{v}_{n}$

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot \mathbf{j} & =0 \\
\frac{\partial \rho \tilde{s}}{\partial t}+\rho \tilde{s} \nabla \cdot \mathbf{v}_{n} & =0 \\
\frac{\partial \mathbf{j}}{\partial t}+\nabla P & =0 \\
m \frac{\partial \mathbf{v}_{s}}{\partial t}+\nabla \mu & =0
\end{aligned}
$$

Hydrodynamic modes (sound waves)

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot \mathbf{j} & =0 \\
\frac{\partial \rho \tilde{s}}{\partial t}+\rho \tilde{s} \nabla \cdot \mathbf{v}_{n} & =0 \\
\frac{\partial \mathbf{j}}{\partial t}+\nabla P & =0 \\
m \frac{\partial \mathbf{v}_{s}}{\partial t}+\nabla \mu & =0
\end{aligned}
$$

Hydrodynamic modes (sound waves)

two coupled sound equations

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot \mathbf{j} & =0 \\
\frac{\partial \rho \tilde{s}}{\partial t}+\rho \tilde{s} \nabla \cdot \mathbf{v}_{n} & =0 \\
\frac{\partial \mathbf{j}}{\partial t}+\nabla P & =0 \\
m \frac{\partial \mathbf{v}_{s}}{\partial t}+\nabla \mu & =0
\end{aligned}
$$

$$
\left(\mathrm{III} \rightarrow \partial_{t} \mathrm{I}\right):
$$

$$
\frac{\partial^{2} \rho}{\partial t^{2}}=\nabla^{2} P
$$

$$
\begin{gathered}
(\mathrm{I} \rightarrow \mathrm{III}, \rho, \ldots): \\
\frac{\partial^{2} \tilde{s}}{\partial t^{2}}=\tilde{s}^{2} \frac{\rho_{s}}{\rho_{n}} \nabla^{2} T
\end{gathered}
$$

Hydrodynamic modes (sound waves)

two coupled sound equations

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot \mathbf{j} & =0 \\
\frac{\partial \rho \tilde{s}}{\partial t}+\rho \tilde{s} \nabla \cdot \mathbf{v}_{n} & =0 \\
\frac{\partial \mathbf{j}}{\partial t}+\nabla P & =0 \\
m \frac{\partial \mathbf{v}_{s}}{\partial t}+\nabla \mu & =0
\end{aligned}
$$

$$
\left(I I I \rightarrow \partial_{t} I\right):
$$

$$
\frac{\partial^{2} \rho}{\partial t^{2}}=\nabla^{2} P
$$

$$
(\mathrm{I} \rightarrow \mathrm{III}, \rho, \ldots):
$$

$$
\frac{\partial^{2} \tilde{s}}{\partial t^{2}}=\tilde{s}^{2} \frac{\rho_{s}}{\rho_{n}} \nabla^{2} T
$$

Fluctuations around the equilibrium configuration:

$$
\begin{aligned}
\rho & \sim \rho_{0}+\left(\frac{\partial \rho}{\partial P}\right)_{T} \delta P(\omega) e^{i \omega(t-x / c)}+\left(\frac{\partial \rho}{\partial T}\right)_{P} \delta T(\omega) e^{i \omega(t-x / c)} \\
\tilde{s} & \sim \tilde{s}_{0}+\left(\frac{\partial \tilde{s}}{\partial P}\right)_{T} \delta P(\omega) e^{i \omega(t-x / c)}+\left(\frac{\partial \tilde{s}}{\partial T}\right)_{P} \delta T(\omega) e^{i \omega(t-x / c)}
\end{aligned}
$$

Hydrodynamic modes (sound waves)

$$
\left\{\begin{array}{l}
\delta P(\omega)\left[-c^{2}\left(\frac{\partial \rho}{\partial P}\right)_{T}+1\right]+\delta T(\omega)\left[-c^{2}\left(\frac{\partial \rho}{\partial T}\right)_{P}\right]=0, \\
\delta P(\omega)\left[-c^{2}\left(\frac{\partial \tilde{s}}{\partial P}\right)_{T}\right]+\delta T(\omega)\left[-c^{2}\left(\frac{\partial s}{\partial T}\right)_{P}+\tilde{s}^{2} \frac{\rho_{s}}{\rho_{n}}\right]=0,
\end{array}\right.
$$

and setting det $=0$ we get the biquadratic equation:

$$
c^{4}-c^{2}\left[\left(\frac{\partial P}{\partial \rho}\right)_{\tilde{s}}+\frac{T \tilde{s}^{2} \rho_{s}}{\tilde{c}_{V} \rho_{n}}\right]+\frac{\rho_{s} T \tilde{s}^{2}}{\rho_{n} \tilde{c}_{V}}\left(\frac{\partial P}{\partial \rho}\right)_{T}=0
$$

...Landau two-fluid model predicts two sound velocities:

$$
\begin{aligned}
& c_{1,2}=\left[\frac{v_{A}^{2}+v_{L}^{2}}{2} \pm \sqrt{\left(\frac{v_{A}^{2}+v_{L}^{2}}{2}\right)^{2}-v_{L}^{2} v_{T}^{2}}\right]^{1 / 2} \\
& v_{A}=\sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{\bar{s}}^{2}}, \quad v_{T}=\sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{T}}, \quad v_{L}=\sqrt{\frac{\rho_{s} T \tilde{\xi}^{2}}{\rho_{n} \tilde{c}_{v}}}
\end{aligned}
$$

(adiabatic, isothermal, Landau velocities)

Hydrodynamic modes (sound waves)

$$
\begin{aligned}
& c_{1,2}=\left[\frac{v_{A}^{2}+v_{L}^{2}}{2} \pm \sqrt{\left(\frac{v_{A}^{2}+v_{L}^{2}}{2}\right)^{2}-v_{L}^{2} v_{T}^{2}}\right]^{1 / 2} \\
& v_{A}=\sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{\tilde{s}}}, \quad v_{T}=\sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{T}}, \quad v_{L}=\sqrt{\frac{\rho_{s} T \tilde{s}^{2}}{\rho_{C} \tilde{C}_{V}}}
\end{aligned}
$$

The sound velocities are determined by:

- thermodynamics
- superfluid density
[Landau J. Phys. (USSR) 5, 71 (1941)]

Hydrodynamic modes and BKT physics

Landau biquadratic equation of sound:

$$
\begin{gathered}
c^{4}-c^{2}\left[\left(\frac{\partial P}{\partial \rho}\right)_{\tilde{s}}+\frac{T \tilde{s}^{2} \rho_{s}}{\tilde{c}_{V} \rho_{n}}\right]+\frac{\rho_{s} T \tilde{s}^{2}}{\rho_{n} \tilde{c}_{V}}\left(\frac{\partial P}{\partial \rho}\right)_{T}=0 \\
c_{1,2}=\left[\frac{v_{A}^{2}+v_{L}^{2}}{2} \pm \sqrt{\left(\frac{v_{A}^{2}+v_{L}^{2}}{2}\right)^{2}-v_{L}^{2} v_{T}^{2}}\right]^{1 / 2} \\
v_{A}=\sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{\tilde{s}}}, \quad v_{T}=\sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{T}}, \quad v_{L}=\sqrt{\frac{\rho_{s} T \tilde{s}^{2}}{\rho_{n} \tilde{c}_{V}}}
\end{gathered}
$$

The sound velocities are determined by:

- thermodynamics
- superfluid density
[Landau J. Phys. (USSR) 5, 71 (1941)]

