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Introduction

Bose-Einstein condensates (BECs) made of ultracold alkali-metal atoms
under microgravity were achieved dropping the BEC down a
146-meter-long drop chamber1, but also rocketing the BEC and
conducting experiments during in-space flight.2

In 2020 a BEC in harmonic trap3 has been observed with the NASA’s
Cold Atom Laboratory onboard of the International Space Station.
Moreover, in 2021 the same team has reported the observation of
ultracold atomic bubbles.4

1T. van Zoest, et al., Science 328, 1540 (2010)
2D. Becker et al., Nature 562, 391 (2018).
3D.C. Aveline et al., Nature 582, 193 (2020).
4R.A. Carollo et al., e-preprint arXiv:2108.05880.



Bose gas on the surface of a sphere

Our theoretical study of a Bose gas on the surface of a sphere is triggered
by the experimental confinement the atoms on a bubble trap,5 which
needs microgravity conditions.6

The energy of a particle of mass m moving on the surface of a sphere of
radius R is quantized according to the formula

εl =
~2

2mR2
l(l + 1) , (1)

where ~ is the reduced Planck constant and l = 0, 1, 2, ... is the integer
quantum number of the angular momentum. This energy level has the
degeneracy 2l + 1 due to the magnetic quantum number
ml = −l ,−l + 1, ..., l − 1, l of the third component of the angular
momentum.

5B. M. Garraway and H. Perrin, J. Phys. B 49, 172001 (2016).
6E.R. Elliott et al., npj Microgravity 4, 16 (2018); R.A. Carollo et al., e-preprint

arXiv:2108.05880.



Non-interacting bosons: critical temperature (I)

In quantum statistical mechanics the total number N of non-interacting
bosons moving on the surface of a sphere and at equilibrium with a
thermal bath of absolute temperature T is given by

N =
+∞∑
l=0

2l + 1

e(εl−µ)/(kBT ) − 1
, (2)

where kB is the Boltzmann constant and µ is the chemical potential. In
the Bose-condensed phase, we can set7 µ = 0 and

N = N0 +
+∞∑
l=1

2l + 1

eεl/(kBT ) − 1
, (3)

where N0 is the number of bosons in the lowest single-particle energy
state, i.e. the number of bosons in the Bose-Einstein condensate (BEC).

7For details, see Martina Russo, BSc thesis, Supervisor: LS, Univ. of Padova
(2019).



Non-interacting bosons: critical temperature (II)

Within the semiclassical approximation, where
∑+∞

l=1 →
∫ +∞

1
dl , the

previous equation becomes

n = n0 +
mkBT

2π~2

(
~2

mR2kBT
− ln

(
e~

2/(mR2kBT ) − 1
))

, (4)

where n = N/(4πR2) is the 2D number density and n0 = N0/(4πR2) is
the 2D condensate density.
At the critical temperature TBEC , where n0 = 0, one then finds8

kBTBEC =
2π~2

m n
~2

mR2kBTBEC
− ln

(
e~2/(mR2kBTBEC ) − 1

) . (5)

As expected, in the limit R → +∞ one gets TBEC → 0, in agreement
with the Mermin-Wagner theorem.9 However, for any finite value of R
the critical temperature TBEC is larger than zero.

8A. Tononi and LS, Phys. Rev. Lett. 123, 160403 (2019).
9N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).



Non-interacting bosons: critical temperature (III)

Top panel: TBEC vs nR2, with ζ = ~2n/m. Solid line: semiclassical
approximation (solid line); dashed line: numerical evaluation of the sum.
Bottom panel: condensate fraction n0/n vs temperature T/TBEC .



Interacting bosons: thermodynamics (I)

We now consider a system of interacting bosons on the surface of a
sphere of radius R and contact interaction of strength g .10

Adopting functional integration the partition function Z reads

Z =

∫
D[ψ̄, ψ] e−

S[ψ̄,ψ]
~ , (6)

where, by using β = 1/(kBT ) with T the absolute temperature,

S [ψ̄, ψ] =

∫ β~

0

dτ

∫ 2π

0

dϕ

∫ π

0

sin(θ) dθ R2 L(ψ̄, ψ) (7)

is the Euclidean action and, with L̂ is the angular momentum operator,

L = ψ̄(θ, ϕ, τ)

(
~∂τ +

L̂2

2mR2
− µ

)
ψ(θ, ϕ, τ) +

g

2
|ψ(θ, ϕ, τ)|4 (8)

is the Euclidean Lagrangian of the bosonic field ψ(θ, φ, τ), which depends
on the spherical angles θ and φ and on the imaginary time τ .

10A. Tononi and LS, Phys. Rev. Lett. 123, 160403 (2019).



Interacting bosons: thermodynamics (II)

The condensate phase is introduced with the Bogoliubov shift

ψ(θ, ϕ, τ) = ψ0 + η(θ, ϕ, τ), (9)

where the real field configuration ψ0 describes the condensate
component. By substituting this field parametrization and keeping only
second order terms in the field η we rewrite the Lagrangian as

L = L0 + Lg (10)

with L0 = −µψ0
2 + gψ0

4/2.
We use the following decomposition of the complex fluctuation field
η(θ, ϕ, τ)

η(θ, ϕ, τ) =
∑
ωn

∞∑
l=1

l∑
ml=−l

e−iωnτ

R
Y l
ml

(θ, ϕ) η(l ,ml , ωn), (11)

where ωn = 2πn/(~β) are the Matsubara frequencies, and we introduce
the orthonormal basis of the spherical harmonics Y l

ml
(θ, φ).



Interacting bosons: thermodynamics (III)

After some analytical calculations, at the Gaussian level the grand
potential

Ω = − 1

β
ln(Z) ' − 1

β
(ln(Z0) + ln(Zg )) (12)

is given by

Ω(µ, ψ0
2) = 4πR2

(
− µψ0

2 + gψ0
4/2
)

+
1

2

∞∑
l=1

l∑
ml=−l

El(µ, ψ0
2)

+
1

β

∞∑
l=1

l∑
ml=−l

ln(1− e−βEl (µ,ψ0
2)) (13)

where
El(µ, ψ0

2) =
√

(εl − µ+ 2gψ0
2)2 − g2ψ0

4 (14)

is the excitation spectrum of the interacting system, with
εl = ~2l(l + 1)/(2mR2) the single-particle energy.



Interacting bosons: thermodynamics (IV)

The condensate number density n0 of the system is given by

n0 = ψ0
2 , (15)

where we fix the value of the order parameter ψ0 with the condition

∂Ω(µ, ψ0
2)

∂ψ0
= 0 . (16)

Notice that from this formula we get n0 as a function of µ.
The total number density of the system is instead given by

n = − 1

4πR2

∂Ω(µ, n0(µ))

∂µ
. (17)

At the lowest order of a perturbative scheme,11 where ψ0 is obtained

from the mean-field equation ∂Ω0(µ,ψ0
2)

∂ψ0
= 0, we get ψ0 '

√
µ/g and

El ' EB
l =

√
εl(εl + 2µ) . (18)

11H. Kleinert, S. Schmidt, and A. Pelster, Phys. Rev. Lett. 93, 160402 (2004).



Interacting bosons: thermodynamics (V)

Within this perturbative scheme12 from the previous equations we
obtain13 the BEC critical temperature

kBTBEC =
2π~2n

m − gn
2

~2

2mR2kBTBEC

(
1 +

√
1 + 2gmnR2

~2

)
− ln

(
e

~2

mR2kBTBEC

√
1+ 2gmnR2

~2 − 1

) ,

(19)
where the condensate density n0 is zero.

12H. Kleinert, S. Schmidt, and A. Pelster, Phys. Rev. Lett. 93, 160402 (2004).
13A. Tononi and LS, Phys. Rev. Lett. 123, 160403 (2019).



Superfluid density (I)

Adopting the Landau formula for the normal density in a superfluid,14 we

calculate the bare superfluid density n
(0)
s (T ) as

n(0)
s = n − 1

kBT

∫ +∞

1

dl (2l + 1)

4πR2

~2(l2 + l)

2mR2

eE
B
l /(kBT )

(eE
B
l /(kBT ) − 1)2

. (20)

Moreover, applying the Kosterlitz-Nelson criterion15 we evaluate
numerically the Berezinskii-Kosterlitz-Thouless critical temperature TBKT

of the superfluid-normal transition induced by the proliferation of
quantized vortices.16

14L. Landau, Phys. Rev. 60, 356 (1941); E.M. Lifshitz and L. P. Pitaevskii,
Statistical Physics: Theory of the Condensed State, Course of Theoretical Physics,
Vol. 9 (Butterworth-Heinemann, 1980).

15D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).
16V.L. Berezinskii, Sov. Phys. JETP 34 610 (1971); J.M. Kosterlitz and D.J.

Thouless, Journal of Physics C: Solid State Physics 6 1181 (1973).



Superfluid density (II)

In our problem of interacting bosons on the surface of a sphere, we
determine the critical temperature TBKT by using the Nelson-Kosterlitz
criterion17:

kBTBKT =
π

2

~2

m
n(0)
s (T−BKT ) . (21)

However, for the sake of simplicity we use the bare superfluid density

n
(0)
s (T ) instead of the renormalized one ns(T ).

In a very recent paper18 we have instead used the renormalized superfluid
density ns(T ) to determine TBKT by solving the Kosterlitz-Thouless
renormalization group equations.

17D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).
18A. Tononi, A. Pelster, and LS, Phys. Rev. Research 4, 013122 (2022).



Superfluid density (III)

The bare superfluid density n
(0)
s overestimates the renormalized one ns .

However, the renormalized superfluid fraction ns/n of a shell-shaped
superfluid does not display an abrupt jump, but vanishes smoothly
around the temperature Tin of the inflection point. Adapted from A.
Tononi, A. Pelster, and LS, Phys. Rev. Research 4, 013122 (2022).



Phase diagram for bosons on the surface of a sphere (I)

We now analzye the phase diagram of the gas of bosons on the surface of
a sphere by using the plane (gm/~2,kBT/ζ), where gm/~2 is the
adimensional interaction strength of bosons and kBT/ζ is the
adimensional temperature with ζ = ~2n/m.

Within the approximations adopted, depending on the values of gm/~2,
kBT/ζ, but also nR2, the system can show:
– coexistence of condensation and superfluidity (BEC+SF);
– superfluidity in the absence of condensation (SF);
– Bose-Einstein condensation in the absence of superfluidity (BEC).

In the thermodynamic limit, i.e. nR2 → +∞, the BEC region shrinks to
zero.



Phase diagram for bosons on the surface of a sphere (II)

Phase diagram of the bosonic system for nR2 = 102 (upper panel) and
nR2 = 104 (lower panel). Here ζ = ~2n/m. Adapted from A. Tononi
and LS, Phys. Rev. Lett. 123, 160403 (2019).



Phase diagram for bosons on the surface of a sphere (III)

Phase diagram of the bosonic system for nR2 = 105. Here ζ = ~2n/m.
Adapted from A. Tononi and LS, Phys. Rev. Lett. 123, 160403 (2019).



Conclusions (I)

Triggered by recent achievements of space-based BECs under
microgravity and bubble traps, which confine atoms on a thin shell,
we have investigated19 BEC on the surface of a sphere finding:
– BEC critical temperature for non-interacting bosons;
– BEC thermodynamcs, superfluid density, and BEC and BKT
critical temperatures for interacting bosons.

In a recent paper20, we have instead analyzed BEC on the surface of
an ellipsoid for realistic bubble-trap parameters calculating:
– BEC critical temperature both non-interacting and interacting
bosons;
– the free expansion of the hollow Bose condensate.

19A. Tononi and LS, Phys. Rev. Lett. 123, 160403 (2019).
20A. Tononi, F. Cinti, and LS, Phys. Rev. Lett. 125, 010402 (2020).



Conclusions (II)

In a very recent paper21 we have analyzed in detail the BKT phase
transition for a BEC on the surface of a sphere calculating the
renormalized superfluid density of the system by deriving and solving
generalized Kosterlitz-Thouless renormalization group equations.

See the next talk of Andrea Tononi about the 2D equation of state
and the relationship between the 2D interaction strength g and the
2D s-wave scattering length as .22

21A. Tononi, A. Pelster, and LS, Phys. Rev. Research 4, 013122 (2022).
22A. Tononi, Phys. Rev. A 105, 023324 (2022).



Open problems

The surface of a sphere has a constant curvature while the surface
of an ellipsoid does not have a constant curvature. Does a
locally-varying curvature affect the quantum-thermal properties of a
Bose gas constrained to move on the surface of an ellipsoid?

For a particle constrained on a curve it appears a quantum-curvature
potential23

UQC (s) = −~2κ(s)2

8m
,

where κ(s) is the local geodesic curvature of the curve and s is the
curvilinar abscissa (arclength) along the curve.

Similarly, also for a particle constrained on a surface it appears a
quantum-curvature potential.24 In the case of the surface of an
ellipsoid this quantum-curvature potential could strongly affect the
quantum-thermal properties of a Bose gas.

23L. Salasnich, Bose-Einstein condensate in an elliptical waveguide, SciPost Phys.
Core 5, 015 (2022).

24N.S. Moller, F.E.A. dos Santos, V.S. Bagnato, and A. Pelster, New. J. Phys. 22,
063059 (2020).
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