A two-dimensional superfluid on a curved surface from supersonic rotation to gravity compensation

Romain Dubessy & BEC group

Laboratoire de physique des lasers, CNRS UMR 7538 Université Sorbonne Paris Nord, Villetaneuse, France

Prospects of Quantum Bubble Physics - April 6-7 2022

Physics in a bubble the dressed quadrupole trap

Adiabatic potentials for rf-dressed atoms

Atoms are confined to an isomagnetic surface of a quadrupole field.

- local *B* and rf fields: atomic spin follows adiabatically a local eigenstate
- strong confinement to the surface
- smooth surface potentials

[reviews Garraway/Perrin 2016 & 2017]

This talk: quasi 2D superfluid on the surface of the bubble trap

Dressed Quad

The Rb experiment at Villetaneuse

From a plugged quadrupole trap to an adiabatic potential

lifetime up to 120 s

[Dubessy PRA 2012, Merloti NJP 2013]

Dressed Quad

The Rb experiment at Villetaneuse

From a plugged quadrupole trap to an adiabatic potential

lifetime up to 120 s

B

[Dubessy PRA 2012, Merloti NJP 2013]

Dressed Quad

The Rb experiment at Villetaneuse

From a plugged quadrupole trap to an adiabatic potential

()	

LPL

[Dubessy PRA 2012, Merloti NJP 2013]

Dressed Quad

The dressed quadrupole trap Dressing the spin states

quadrupole field:
$$m{B}_0 = b'(xm{e}_x + ym{e}_y - 2zm{e}_z)$$
 & rf photons

Adiabatic potential:
$$V=\hbar\sqrt{\delta({m r})^2+\Omega_{
m rf}({m r})^2}$$

1

Dressed Quad

The dressed quadrupole trap Dressing the spin states

quadrupole field:
$$B_0 = b'(x e_x + y e_y - 2z e_z)$$
 & rf photons

Adiabatic potential:
$$V=\hbar\sqrt{\delta({m r})^2+\Omega_{
m rf}({m r})^2}$$

(RWA)

Further control the trap with additional rf fields.

Dressed Quad

Trapping atoms on a surface A smooth two-dimensional trap

• very flat $\omega_z \gg \omega_{x,y}$

- in-plane anisotropy $\eta = \frac{\omega_{\rm X}}{\omega_{\rm y}}$ controlled through rf polarization:
- ullet rotationally invariant $(\eta=1)$ for a σ^+ polarization along z
- anisotropic ($\eta \neq 1$) for linear horizontal polarization

Dressed Quad

Trapping atoms on a surface A smooth two-dimensional trap

$$\begin{split} \Omega_{\rm rf} &\sim 50\text{-}100 \text{ kHz} \\ \omega_z &\propto \frac{b'}{\sqrt{\Omega_{\rm rf}}} &\sim 0.3\text{-}2 \text{ kHz} \\ \omega_x, \omega_y &\propto \sqrt{\frac{g}{r_0}} &\sim 20\text{-}50 \text{ Hz} \\ r_0 &\propto \omega_{\rm rf}/b' &\sim 20\text{-}200 \ \mu\text{m} \end{split}$$

• very flat $\omega_z \gg \omega_{x,y}$

- in-plane anisotropy $\eta = \frac{\omega_x}{\omega_y}$ controlled through rf polarization:
- rotationally invariant $(\eta = 1)$ for a σ^+ polarization along z
- ullet anisotropic $(\eta
 eq 1)$ for linear horizontal polarization
- geometry can be modified dynamically
- ideal for the study of the 2D trapped gas dynamics

[Dubessy NJP 2014]

Fast rotation in a bubble trap

Fast rotation in a bubble trap

[Guo et al. PRL 124, 025301 (2020)]

How to rotate ? Using a quadrupolar deformation

- use a weakly elliptic rf polarization • angle & amplitude are fully controlled $\theta(t) = \Omega_{\text{stir}}t.$ $V_{\text{trap}} \simeq \frac{M}{2}\omega_r^2 \left[(1+\epsilon)x'^2 + (1-\epsilon)y'^2\right]$
- couple to the BEC quadrupole mode
- resonant coupling for:
 - $\Omega_{
 m stir} = rac{\omega_r}{\sqrt{2}} \simeq 2\pi imes 24$ Hz

[Chevy PRL 2000, Abo-Shaeer Science 2001]

Other methods:

[Schweikhard PRL 2004, Kang PRA 2015, Sherlock 2011, Gildemesiter PRA 2012, Navez NJP 2016, ...]

Vortex lattice...

24 Hz

Vortex lattice...

Vortex lattice... disordered lattice...

Vortex lattice... disordered lattice...

Vortex lattice... disordered lattice... melting?

Vortex lattice... disordered lattice... melting?

- possible melting of the vortex lattice pair correlations: crystal \rightarrow liquid
- can we reach higher rotations ?
 centrifugal force cancels the harmonic trapping!

[see also Bretin PRL 2004, Schweikhard PRL 2004]

Anharmonic trap Fighting the centrifugal force

To restore the trapping potential, add a quartic term to V(r):

$$V_{\mathrm{eff}}(r) = rac{m}{2}(\omega_r^2 - \Omega^2)r^2 + \lambda r^4.$$

[Dalibard PRL 2004]

 \Rightarrow the bubble trap has higher order terms.

Theoretical predictions Rotating beyond the trapping frequency

Giant vortex in a harmonic + quartic trap:

vortex lattice

giant vortex

[Fetter 2005, Kavoulakis / Baym 2003]

(A. White's talk for a shell geometry)

Theoretical predictions Rotating beyond the trapping frequency

Giant vortex in a harmonic + quartic trap:

vortex lattice

dynamical ring

[Fetter 2005, Kavoulakis / Baym 2003]

(A. White's talk for a shell geometry)

GP simulation for our trap

Creating a dynamical ring Spin-up evaporation mechanism

Creating a dynamical ring Spin-up evaporation mechanism

Creating a dynamical ring Spin-up evaporation mechanism

Acceleration of the rotation, full depletion of the center. (atoms are removed selectively at the center)

A thin ring sustained by its dynamics Observation of a annular quantum gas stabilized by rotation

- analysis of the radial profile
 ⇒ Thomas-Fermi profile
- what is different from all other rings ?

A supersonic flow

Measuring the rotation from time-of-flight expansion

- size² scales as $t_{\rm TOF}^2$ (ballistic expansion)
- fit gives: $\Omega \sim 1.05 \omega_r$, i.e. v = 7.4 mm/s

• peak density

$$n_0 \sim 15 \ \mu m^{-2}$$

 $\Rightarrow c_0 = 0.4 \ mm/s$

A degenerate gaz flowing at Mach 18 !

[see also Pandey Nature 2019] (and W. von Klitzing's talk)

Compensating gravity in a quadrupole dress trap

Compensating gravity in a bubble trap

[Guo et al. arXiv:2105.12981 (2021)]

Physics in a bubble BEC in the ISS

A BEC machine on board the ISS!

[Sun PRA 2018, Bereta Am. J. Phys. 2019, Tononi PRL 2019 & PRL 2020, Móller NJP 2020, Bereta PRA 2021]

Gravity compensation Doing bubbles on Earth?

Can't we look for this physics on Earth?

Gravity compensation Doing bubbles on Earth?

Can't we look for this physics on Earth?

Pushing the atoms upwards Experimental results

- Increasing gradient b' i.e. reducing r_0
- Experiment (top view) vs GP ground state (top / side views)

Temperature below 30 nK

(Need to take into account imaging resolution \sim 4 μ m)

Pushing the atoms upwards Experimental results

- Increasing gradient b' i.e. reducing r_0
- Experiment (top view) vs GP ground state (top / side views)

(Need to take into account imaging resolution $\sim 4 \ \mu m$)

A ring forms! [Guo et al., arXiv:2105.12981]

Why a ring ? Did we miss something ?

The transverse trapping frequency ω_{\perp} is not constant...

(B. Garraway / N. Móller talks)

$$V = \hbar\Omega_0 \left(\frac{1}{2} - \frac{z}{r_0}\right) + Mgz + \frac{\hbar\omega_{\perp}(z)}{2}$$

(assume the atoms are in the transverse groundstate)

Avoided crossing: $\omega_\perp \sim b'/\sqrt{\Omega_{
m rf}}$

- ω_{\perp} minimal close to the equator
- diverges at the north pole!

 \Rightarrow repels the atoms from the top

Summary & prospects (I) Fast rotations on a shell

A very smooth and tunable shell trap to study fast rotations

- Observation of vortex lattices
- Vortex lattice melting for $\Omega \sim \omega_r$
- Formation of a long-lived dynamical ring flowing at Mach 18 for tens of second for $\Omega > \omega_r$

 \Rightarrow investigate the decay mechanisms (add an obstacle) \Rightarrow study the lattice - liquid transition

Summary & prospects (II) Effect of dimensional reduction on a shell

A novel gravity compensation mechanism

• induces spatial localization (a ring appears)

requires a fine tuning of the rf

residual inhomogeneities due to rf gradients

- quantitative agreement requires beyond RWA
- effective potential including zero-point energy

non-separable potential

cannot fill a full bubble... but half of it

we face similar problems than in the Bubble-CAL experiment

 \Rightarrow Combine rotation and gravity compensation to explore vortex physics on a curved surface

The people behind this work

BEC group @ Villetaneuse

H. Perrin

- A. Kumar
- M. de Goër de Hervé
- A. Perrin
- L. Longchambon
- T. Badr

Collaborators

