Multi-RF-Dressed Potentials

Dr. Elliot Bentine, University of Oxford

Multi-RF-Dressed Potentials

- RF-dressed potentials
- Multiple-RF-dressed potentials
 - Explanation
 - The experimental apparatus
 - Technical considerations
 - The MRF double-well and interferometry
- Software toolkit

The Team

• RF-dressed experiment

Abel

En

David Garrick

Beregi Chang

Dr. Shinichi Sunami

Prof. Chris Foot

- Previous members:
 - Ben Sheard
 - Ben Sherlock
 - Marcus Gildemeister
 - Edward Owen
 - Tiffany Harte
 - Ben Yuen
 - Kathrin Luksch
 - Adam Barker

Two types of bubbles:

y

RF dressed potentials

Shown for Rubidium, F=1

 $\widetilde{N} = N_{rf} - m_F$

Carollo et al, arXiv:2108.05880

- Bubble parameters:
 - Location of resonance \rightarrow Bubble size (ω, B')
 - Trap frequency \rightarrow Bubble thickness (Ω, B')
- Species-selective when Landé g-factors differ (85/87, F=1/F=2)
 - Polarisation of the RF field \rightarrow tip and tilt, swill
 - Dynamic control through the RF field

A multiple-RF double shell

• Three applied frequencies creates three large avoided crossings and a 'double well' potential.

 Potential can be sculpted by modifying properties of each frequency component (below: change amplitude of 'barrier' rf)

The RF-dressed apparatus

RF spectroscopy in the SRF potential

- A second weak RF field can be used to perform evap Easwaran et al, 2010 arXiv:1002.2620
- **RF spectroscopy:** Apply a second weak probe rf and measure atom loss.

Many possible transitions, even for single dressing RF!

Luksch et al, NJP 2019

RF spectroscopy in the SRF potential

- A second weak RF field can be used to perform evap Easwaran et al, 2010 arXiv:1002.2620
- **RF spectroscopy:** Apply a second weak probe rf and measure atom loss.

Luksch et al, NJP 2019

RF spectroscopy in the SRF potential

- A second weak RF field can be used to perform evap Easwaran et al, 2010 arXiv:1002.2620
- **RF spectroscopy:** Apply a second weak probe rf and measure atom loss.

RF spectroscopy in the MRF potential

- Great number of transitions allowed for MRF dressing.
- Requires extremely clean RF spectrum to prevent atom loss.

Luksch et al, NJP 2019

Matter-wave interference in the MRF potential

- Start with a condensed 2D cloud; lift barrier to split.
- Drop clouds; expand and overlap during freefall, producing fringes.

(Requires high field gradient and low Rabi frequencies of the dressing RF to get 2D confinement – as in Romain's talk! $\omega_z \sim 1 \text{ kHz}$

Matter-wave interference in the MRF potential

- Splitting the 2D cloud produces two daughter clouds of lower density.
- The daughter clouds may be quenched through the Berezinskii-Kosterlitz-Thouless transition
- Fringes provide a way to measure phase fluctuations in the 2D system.

Matter-wave interference in the MRF potential

Sunami et al (2021), arXiv:2108.08840

Species-selective double well

$$\mathbf{B}_{\mathrm{RF}} = \sum_{i=1}^{N} B_{i} \Big(\cos\left(\omega_{i}t\right) \hat{\mathbf{e}}_{x} - \sin\left(\omega_{i}t\right) \hat{\mathbf{e}}_{y} \Big) + A_{i} \Big(\cos\left(\omega_{i}t\right) \hat{\mathbf{e}}_{x} + \sin\left(\omega_{i}t\right) \hat{\mathbf{e}}_{y} \Big)$$

Barker et al, 2020 arXiv:2003.05925

Software

AtomECS

Software suite for simulating cold atom experiments.

- Started as MOT simulation code but now has many features.
- Scattering forces on atoms in near-resonant optical fields.
 - Multi-beam rate equation approach.
 - Respects Doppler limit, to some extent recoil limit.
 - More detail given in paper.
- Magnetic and dipole-force traps.
- S-wave collisions between particles.
- Written in rust using the Entity-Component-System (ECS) pattern.
- Data-oriented architecture gives great parallel performance.
- Unit tests, integration tests and continuous integration
 - Automated testing of each module in the program, and all modules together. Currently >50 different tests.
 - Make changes without fear of breaking functionality!

arXiv:2105.06447 (cond-mat)

[Submitted on 13 May 2021]

AtomECS: Simulate laser cooling and magneto-optical traps

X. Chen, M. Zeuner, U. Schneider, C. J. Foot, T. L. Harte, E. Bentine

Developers now also include:

Cornell University

Cambridge: Xintong Su, Kimberly Tkalcec, Brian Bostwick Oxford: Abigail Coughlan, David Garrick

Above: Simulations of Doppler limit in AtomECS for a 3D MOT. **Inset:** Good agreement between theoretical limit over a range of beam detunings.

AtomECS: Example simulations

Simulating a 2D MOT source Atoms come from an oven on the left, captured by

MOT beams; laser-cooled flux ejected to next chamber.

Atoms trapped in an RF-dressed potential (Josh Greensmith) atom trajectory 0.6 resonant spheroid outline 0.4 02 0.0 -0.2 -0.4 -0.6 -0.8

-0.25

0.00

x (mm)

0.25 0.50 1.00

0.75

1.25

1.50

Collisions/Evaporative cooling

-1.50

-1.25 -1.00 -0.75 -0.50

(~~) 1

AtomECS: performance

Right: Load balancing of AtomECS

over multiple CPU cores

- (a) shows the wall time per step per atom for a MOT simulation.
 - For >1000 atoms the parallel execution becomes effective.
- (b) shows fit to Amdahl's law for 10⁶ atoms. Gives ~85% of program parallelised.
- Benchmarks:
 - AION 2D MOT, capture from an oven: 10⁶ atoms initially ejected, 15ms of motion, 200 atoms captured. 4s to simulate.
 - *Evap,magnetic trap*: 5x10³ pseudo-particles simulated, s-wave collisions, 2s of motion. Takes 2.5s to simulate.

Thread (TID: 14924)		
Thread (TID: 12360)		
Thread (TID: 3716)		I II.
Thread (TID: 14364)	all the second sec	and the factor
Thread (TID: 16988)		
Thread (TID: 12776)	ali Alteres and address and a	a ser la la ser la

Calculator for RF-dressed Adiabatic Potentials

- Makes it easy to calculate RF-dressed potentials.
- Calculates dressed eigenenergies by integrating TDSE and then applying Floquet theory (a time analog of Bloch's theorem).
- Works for multiple frequencies, arbitrary polarisation, multiple species

https://github.com/ElliotB256/CRFAP

Thanks for listening!

• RF-dressed experiment

Abel

En

David Garrick

Beregi Chang

Dr. Shinichi Sunami

Prof. Chris Foot

- Previous members:
 - Ben Sheard
 - Ben Sherlock
 - Marcus Gildemeister
 - Edward Owen
 - Tiffany Harte
 - Ben Yuen
 - Kathrin Luksch
 - Adam Barker

Species-selective trapping (Rb 85-87)

• Species-selective trapping possible when the Landé g-factors differ.

RF dressed collisions

Entity-Component-System (ECS) pattern

The ECS bit of AtomECS

Systems implement program functionality by operating on collections of entities and components

Advantages of the ECS Pattern

1. Produces a **flat**, **contiguous** program memory structure – *really* fast for getting memory into processor.

Versus 'heap' in managedmemory applications

2. Easy **parallelisation**! Systems are explicit about the components they read and write, and so solving dependency is easy.

UpdatePositionSystem			
Write Access:	Position		
Read Access:	Velocity		
CalculateDopplerShiftSystem			
CalculateDopplerS	ShiftSystem		
CalculateDopplers	ShiftSystem DopplerShift		
CalculateDopplerS Write Access: Read Access:	ShiftSystem DopplerShift Velocity		

 \rightarrow Trivial to run simultaneously!

3. **Behaviour by composition** avoids the *behaviour by inheritance* antipattern. Flexible program structure.

'Atom'	'laser beam'
Entity 1	Entity 1
Position	Position
Velocity	Intensity
Mass	Direction
	Detuning

4. Small systems implement very specific features – **easy to test**!