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Two types of bubbles:

rf-dressed BEC
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RF dressed potentials

Shown for Rubidium, F=1
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* Bubble parameters:
* Location of resonance — Bubble size (w, B')
| | : | | * Trap frequency — Bubble thickness (€, B')
0 2 4 6 8 10 * Species-selective when Landé g-factors differ (85/87,
B| (Gauss) F=1/F=2)
N * Polarisation of the RF field — tip and tilt, swill
N = N‘I"f — Mg .

Dynamic control through the RF field



A multiple-RF double shell

* Three applied frequencies creates three large avoided crossings and a ‘double well’ potential.
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* Potential can be sculpted by modifying properties of each
frequency component (below: change amplitude of ‘barrier’ rf)
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The RF-dressed apparatus

Not shown:
lon pumps, MOT coils,
laser systems

RF dressing coils [—

TOP coils (also
for TAAP field)

High-current coils
(field gradient)




RF spectroscopy in the SRF potential

* A second weak RF field can be used to perform evap Easwaran et al, 2010 arxiv:1002.2620

* RF spectroscopy: Apply a second weak probe rf and measure atom loss.

Many possible transitions, even for single
dressing RF!

B
B| (Gauss) Luksch et al, NJP 2019



RF spectroscopy in the SRF potential

* A second weak RF field can be used to perform evap Easwaran et al, 2010 arxiv:1002.2620
* RF spectroscopy: Apply a second weak probe rf and measure atom loss.
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RF spectroscopy in the SRF potential

* A second weak RF field can be used to perform evap Easwaran et al, 2010 arxiv:1002.2620
* RF spectroscopy: Apply a second weak probe rf and measure atom loss.
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RF spectroscopy in the MRF potential

e Great number of

transitions allowed for
MRF dressing.

* Requires extremely clean

RF spectrum to prevent
atom loss.

Luksch et al, NJP 2019



Matter-wave interference in the MRF potential

e Start with a condensed 2D cloud; lift barrier to split.
* Drop clouds; expand and overlap during freefall, producing fringes.

(Requires high field gradient and low Rabi frequencies of the dressing
RF to get 2D confinement — as in Romain’s talk! w, ~ 1 kHz




Matter-wave interference in the MRF potential

e Splitting the 2D cloud produces two daughter clouds of lower density.
* The daughter clouds may be quenched through the Berezinskii-Kosterlitz-Thouless transition

* Fringes provide a way to measure phase fluctuations in the 2D system.
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Sunami et al (2021), arXiv:2108.08840



Matter-wave interference in the MRF potential

Sunami et al (2021), arXiv:2108.08840



Species-selective double well
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Cornell University

Condensed Matter > Quantum Gases

Ato m E CS arXiv:2105.06447 (cond-mat)
[Submitted on 13 May 2021]

EtnmECS: Simulate laser cooling and magneto-optical traps

Software suite for simulating cold atom experiments.

X. Chen, M. Zeuner, U. Schneider, C. J. Foot, T. L. Harte, E. Bentine
 Started as MOT simulation code but now has many features. Developers now also include:
Cambridge: Xintong Su, Kimberly Tkalcec, Brian Bostwick

. . ) . Oxford: Abigail Coughlan, David Garrick
* Scattering forces on atoms in near-resonant optical fields.

e Multi-beam rate equation approach. 600 . . .
* Respects Doppler limit, to some extent recoil limit. 300
* More detail given in paper. 500 | ! ]
o . I ':'2(]0 g
* Magnetic and dipole-force traps. | = "
. . < 4001 i 1
* S-wave collisions between particles. CO 2 | 0
= 1\ §/T
300} |
e Written in rust using the Entity-Component-System (ECS) 200 | ‘
pattern. | N
* Data-oriented architecture gives great parallel performance. 0 500 1000 1-(500) 2000 2500 3000
. . . . . . t (ps
* Unit tests, Integration tests and continuous Integration
. Autor}?ated testing of each module in the program, and all modules Above: Simulations of Doppler limit in
together.

AtomECS for a 3D MOT. Inset: Good
agreement between theoretical limit
over a range of beam detunings.

* Make changes without fear of breaking functionality!



AtomECS: Example simulations

Optimisation of experiments Atoms trapped in an RF-dressed potential
x10 * (Josh Greensmith)
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Simulating a 2D MOT source

Atoms come from an oven on the left, captured by 104
MOT beams; laser-cooled flux ejected to next chamber.
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Teim/Na (8)

AtomECS: performance

100 atoms
10000 atorms

1000000 atorms |

mumber of threads,

Right: Load balancing of AtomECS
over multiple CPU cores

* (a) shows the wall time per step per atom for a MOT

simulation.

* For >1000 atoms the parallel execution becomes effective.

* (b) shows fit to Amdahl’s law for 10° atoms. Gives ~85% of

program parallelised.

e Benchmarks:

* AION 2D MOT, capture from an oven: 10° atoms initially ejected,
15ms of motion, 200 atoms captured. 4s to simulate.

* Evap,magnetic trap: 5x103 pseudo-particles simulated, s-wave
collisions, 2s of motion. Takes 2.5s to simulate.
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ap = AP.

ap.PY =

sampler
sampler.
sampler.

* Makes it easy to calculate RF-dressed potentials.

* Calculates dressed eigenenergies by integrating TDSE and then applying
Floquet theory (a time analog of Bloch’s theorem).

* Works for multiple frequencies, arbitrary polarisation, multiple species

3.6 3.8 4.0 ]; % MHz
0.16 0.2 0.16 ] / 0.7; % Gauss

Calculator()
.LinearPolarised(RF, amp)

.0fSpecies('species', 87, 'F', 1);

pi/2; ap.BY = ap.BX * 0.2;

= AP.Sampler.LineSampler(ap);

StartB = linspace(3.5, 4.1, 10); %starting fields

Sample();

Calculator for RF-dressed Adiabatic Potentials

Eigenenergy (MHz)
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Zeeman splitting (MHz)
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Species-selective trapping (Rb 85-87)

e Species-selective trapping possible when the Landé g-factors differ.




RF dressed collisions

S

Energy / h (MHz

Magnetic field, By (G)




Entity-Component-System (ECS) pattern

Atom 1 Atom 2 Atom 3 Magnet

Each thing is an entity. <|: Entity 1 Entity 2 Entity 3 Entity 4

Position Position Position Position

Components describe
the entities.

Velocity

n Velocity Velocity

BField

a Systems implement program functionality by
operating on collections of entities and components



Advantages of the ECS Pattern

1. Produces a flat, contiguous program

memory structure — really fast for
getting memory into processor.

Position Velocity
Position Velocity
Position Velocity

Position Velocity
Position Velocity
Position Velocity

Versus ‘heap’ in managed- @
memory applications —

= =

2. Easy parallelisation! Systems are
explicit about the components they
read and write, and so solving
dependency is easy.

UpdatePositionSystem

Velocity

CalculateDopplerShiftSystem

DopplerShift

Write Access:

Read Access:

Write Access:

Read Access:

Velocity

— Trivial to run simultaneously!

3. Behaviour by composition avoids
the behaviour by inheritance
antipattern. Flexible program structure.

‘Atom’ ‘laser beam’

Entity 1 Entity 1

Position Position

Velocity

Intensity

Mass Direction

Detuning

4. Small systems implement very
specific features — easy to test!



