ALL OPTICAL QUANTUM BUBBLE TRAP IN MICROGRAVITY

Laboratoire Photonique Numérique Nanosciences

Baptiste BATTELIER, Romain ARGUEL, Clement Metayer, Celia Pelluet, Vincent JARLAUD, Philippe BOUYER

BORDEAUX

Quantum counter part of the whisky bubble: 2D system with a new topology

Our strengths:

- BEC in microgravity
- All optical methods

BORDEAUX

Advantages of all optical method:

- \succ Feshbach resonances \rightarrow interactions
- ➤ ≈ spin-independent trap
- Optical access

Space: The atoms doesn't fall +magnetic trap=atom chip

➤ Light engineering → atom transport, spherical potential...

Time Averaged Potential

R. Roy et al, PhysRevA 93.043403

4/7/2022

COLD ATOM RESERVOIR

- Grey Molasses and Velocity Coherent Population Trapping (VCPT)
- Λ -enhanced scheme (Raman condition δ =0, phase locked beams) $|NC\rangle = (\Omega_2|1\rangle - \Omega_1|2\rangle) / (\Omega_1^2 + \Omega_2^2)$
 - Long-lived Dark states
 - Lower diffusion rate
 - 5 times faster than red detuned molasses EFFICIENT LOADING EFFICIENCY

- The 'trapped' atoms are transparent to the cooling beam thanks to the light shift of the excited state
- The trap is spatially modulated to increase the capture volume

FAST COOLING

The trap is compressed adiabatically, and the evaporative cooling is achieved in about 1s

BEC with 100 000 atoms (Tc=140 nK)

 Ω_1

4/7/2022

- ZERO-G simulator (including partial gravity)
- 500 ms of microgravity
- I shot every 13.5 s
- 125 hours of microgravity per year
- Payload mass: 250 kg
- Payload size: 1 m³

Symetrie (Nîmes, France)

- The evaporative cooling is achieved during the phase of hypergravity
- 10000 condensed atoms (Tc~150 nK)
- · Minimal temperature of 35 nK by adiabatic decompression of the trap

PHYSICAL REVIEW LETTERS 123, 240402 (2019)

All-Optical Bose-Einstein Condensates in Microgravity

G. Condon[®], M. Rabault[®], B. Barrett, L. Chichet, R. Arguel, H. Eneriz-Imaz, D. Naik, A. Bertoldi[®], B. Battelier, and P. Bouyer LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux–IOGS–CNRS:UMR 5298, I rue François Mitterrand, 33400 Talence, France

> A. Landragin LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l'Observatoire, 75014 Paris, France

> > (Received 24 June 2019; published 13 December 2019)

Double dressed states

- > Telecom wavelength \rightarrow lighshift of the excited states (blue detuned)
- > 780 nm light

- Physical model from [Dalibard1985]
- > The dressed states $|1\rangle$ and $|2\rangle$ are a superposition of $|g\rangle$ and $|e\rangle$.

 $|1,n;\mathbf{r}\rangle = exp[i\varphi(\mathbf{r})/2]\cos\theta(\mathbf{r}) |e,n\rangle + exp[-i\varphi(\mathbf{r})/2]\sin\theta(\mathbf{r}) |g,n+1\rangle$

 $|2,n;\mathbf{r}\rangle = -exp[i\varphi(\mathbf{r})]\sin\theta(\mathbf{r})|e,n\rangle + exp[i\varphi(\mathbf{r})]\cos\theta(\mathbf{r})|g,n+1\rangle$

$$\cos 2\theta(\mathbf{r}) = -\delta/\Omega(\mathbf{r}) \qquad \qquad \sin 2\theta(\mathbf{r}) = \omega_1(\mathbf{r})/\Omega(\mathbf{r})$$

$$F_{dip} = \frac{\hbar \nabla \Omega}{2} (\rho_{22} - \rho_{11}) - \hbar \nabla \theta (\rho_{12} + \rho_{21})$$

[Dalibard1985] J. Dalibard and C. Cohen-Tannoudji. Dressed-atom approach to atomic motion in laser light : the dipole force revisited. J. Opt. Soc. Am. B, 2(11) :1707-1720 (1985).

$$|1,n;\overline{r}\rangle \quad \delta\rangle 0 \quad |1,n;\overline{r}\rangle \quad \delta\langle 0$$

$$|g,n+1\rangle \quad |e,n\rangle \quad |e,n\rangle \quad |g,n+1\rangle \quad |2,n;\overline{r}\rangle \quad |2,n;\overline{r}\rangle$$

Spatial dependent

Idea from Aufrons [Bellouvet2018]: double dressed states

$$U(z) = \int_{\infty}^{z} dz' \left\langle \frac{d\hat{p}_{A}(z')}{dt} \right\rangle = -\int_{\infty}^{z} dz' \left[\rho_{ee}(z') \frac{dU_{5P}}{dz'} + \rho_{gg}(z') \frac{dU_{5S}}{dz'} \right]$$

780 nm light implies a mixing of the population in state 5P and 5S, which modifies the dipole force produced by the telecom laser.

Université BORDEAUX

- Trap frequency $\boldsymbol{\omega}$: fit of the trap potential
- Trap depth U₀
- Bubble Radius R_{bub}

$$\tau_d = \frac{1}{\Gamma \rho_{ee}(x_B)}$$

• Escaping rate τ_S

Diffusion rate τ_{D}

$$p_{eff} = \sqrt{\frac{2}{5}\hbar \frac{\omega_{780}}{c}} \qquad \qquad \tau_S = \frac{2mU_0}{p_{eff}^2 \Gamma \rho_{ee}(x_B)}$$

BORDEAUX

- λ_1 =1529 nm, P₁= 0.925 W,
- 780 nm laser: λ_{780} + 0 MHz
- $\Omega_{\rm R}$ =100 MHz

Control of the parameters: $\lambda_1 \rightarrow \omega, R_b, \tau_D$ $P_{1529} \rightarrow \omega, R_b$ waist $\rightarrow \omega, R_b$ $\delta_{780} \rightarrow \omega, U_0$ $\Omega_R^{780} \rightarrow \omega, U_0, R_b$

 $\lambda_1 \rightarrow$ Funny zone between the two transitions at 1529 nm

Play with λ_1 To increase τ_D (τ_D ~74 ms for λ_1 =1529.26099 nm tradeoff with Trap frequency, or required more laser power)

The trap is decompressed when we decrease the radius Rb (with Larger waist for instance or playing with Ω_R) \rightarrow the telecom power can be increased to increase both at the same time

Baptiste BATTELIER

Celia Pelluet, Ph D. student

Clement Metayer, student